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Introduction

Walking around in nature, looking at the sea, feeling the wind, or climbing on solid rocks,
there is hardly any reason to believe that all matter is constituted of small atoms, moving
around in an everlasting motion. In fact, despite the early speculation by the ancient Greek
Demokritos, it was not before the beginning of the 20th century that the atomic nature of mat-
ter was accepted beyond reasonable doubt. Our direct knowledge of the behaviour of matter
is almost exclusively derived from the observation of samples that are very large compared to
atomic dimensions. Most scientific experiments therefore relate to the average properties of
an immense number of atoms or molecules. To give an example, 18 grams of water contain
one mole of molecules ( � 6� 1023 molecules). Suppose one would want to count such a
number of particles. If one were be able to do so at a rate of 100 per minute then, even with
the help of the entire wold’s population, it would still last 2000 millennia (!) until all the
molecules in those 18 grams would have been counted.

Fortunately, one does not need to consider all individual molecules in order to describe the
nature of matter. Although the individual trajectories of the molecules in, say, two separate
glasses of water do not resemble each other at all, the macroscopic behaviour of the two
samples will be the same. It is a well-established fact in thermodynamics that only three
variables, such as for instance pressure, temperature, and number of particles, have to be
specified to unambiguously define the state of a system (or, to be precise, a one-component
system in equilibrium). If the corresponding thermodynamic potential (in this case the Gibbs
free energy) is known as a function of those variables, all other properties, such as the heat
capacity, compressibility, etc., can be derived from it. The power and internal consistency of
the theory of thermodynamics once led Albert Einstein to remark [52]:

A theory is the more impressive the greater the simplicity of its premises, the
more different kinds of things it relates, and the more extended its area of ap-
plicability. Therefore the deep impression that classical thermodynamics made
upon me. It is the only physical theory of universal content which I am con-
vinced will never be overthrown, within the framework of applicability of its
basic concepts.

Despite the immense power in describing the relations between thermodynamic proper-
ties, thermodynamics does not provide the means to predict absolute quantities. They need
to be supplied by an external source, such as experimental measurements. One could, for
instance, measure the temperature with a thermometer, or the pressure with a manometer.
Another approach would be to try and predict the macroscopic properties from microscopic
principles. This is the realm of statistical thermodynamics; starting from a model of the
microscopic constitution of a material (and the interactions between its microscopic con-
stituents), theories are developed that predict thermodynamic properties from the average
statistical behaviour of a vast number of constituents. At this point the question could be
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INTRODUCTION

raised ‘how vast is vast?’ or in other words ‘what should be the size of the model system un-
der consideration?’ The size of the system at which it starts to display macroscopic behaviour
is generally referred to as the macroscopic limit. In most analytical theories, extrapolation to
the macroscopic limit is not a problem. Usually equations are derived for a fixed number of
particles N and the result is subsequently taken to the limit N ! ∞ (infinite is vast enough!).
In case dynamical problems are considered, the limit to macroscopic timescales ( t ! ∞ )
has to be taken as well. That is, the timeframe of observation has to be extended to the scale
at which the dynamics of the system starts to reflect macroscopic dynamics. In some cases,
the order in which both limits should be taken ( N ! ∞ and t ! ∞ ) is not trivial. We will
encounter an example of this in Chapters 8 and 9.

With the advent of computer simulations such as Molecular Dynamics [2,3] it became for
the first time possible to actually test analytical theories and the assumptions that had been
made in solving their equations. Any proposed model system was put into the computer and
its static and dynamic properties were measured via a ‘computer experiment’. The outcomes
were then compared to the theoretical predictions. In such simulations, however, reaching the
thermodynamic limit is not trivial. By nature, one is restricted to finite sizes and several tricks
have been invented to mimic a bulk system. Even then, every reliable computer simulation
should in principle be complemented by some account of finite size effects. A large part of
the present thesis will be devoted to questions of this kind.

Crystal growth and diffusion in zeolites

Although many of the (bulk) properties of materials are indeed controlled by the overall
statistical average of the underlying microscopic dynamics, some of their properties depend
upon the exceptions. In this thesis we encounter two such examples: solidification processes
and the transport of molecules through confined geometries that are themselves of molecular
size. In both cases, it is the local microscopic dynamics that governs the properties of interest,
even in the macroscopic limit.

Part II of this thesis deals with the calculation of the growth rate of the (100) face of an
FCC crystal of spherical particles in contact with its melt. In the growth of crystals, it is the
microscopic processes taking place at the interface that determine the macroscopic morphol-
ogy of the crystal as a whole. No matter how large the two bulk phases (i.e., crystal and melt)
are, the interface extends over at most several interatomic distances, so any theory aiming
at the prediction of crystal morphology should be of microscopic nature. Although many
(thermodynamic) theories have been developed in the past to calculate a crystal’s equilibrium
morphology — theories which were solely based on bulk properties like lattice energies and
bond energies — a growing crystal is never in thermodynamic equilibrium with its environ-
ment. As a consequence, most crystals have a kinetic growth form which will be bounded by
the slowest growing faces. For a prediction of this growth morphology, one needs to be able
to calculate the growth rates of individual planes of the crystal. In this thesis we will do so
for one particular example and we will focus on different ways to set up the simulations and
to extract the desired quantities.

Part III of this thesis deals with the transport of small molecules (methane and argon)

6



INTRODUCTION

through the channels of a nanoporous zeolite (AlPO4-5). Zeolites are crystals with well-
defined pores of molecular dimensions, which makes them perfectly suited for use as molec-
ular sieves or shape-selective catalysts. Their crystalline nature makes the pores essentially
monodisperse, in contrast to disordered alternatives like porous carbon or polymer mem-
branes. For a good understanding of their overall behaviour, it is of the utmost importance to
understand the transport processes taking place when guest molecules move through zeolitic
pores. Because of the molecular confinement, the phase of the guest molecules is completely
different from a normal bulk phase (like gas, liquid, or solid), which leads to a wealth of new
transport phenomena. Moreover, due to the confinement, some thermodynamic concepts that
apply to bulk phases, like for instance the pressure, completely lose their meaning.

In our example AlPO4-5, all pores are aligned and they do not intersect each other. Their
diameters range from ca. 7 nanometers at the narrowest passages (the ‘windows’) to ca. 10
nanometers at the widest passages. We will study the self motion and collective motion
of guest molecules in this system. In the case of self motion, we look at the implications
for (anomalous) diffusion when the adsorbents are of such size that two molecules can just
pass each other in the pores. In the case of collective motion we look at the influence of
correlations between the pathways of the adsorbents. Like in Part II, the focus will be on
the proper setup of the computer experiments and on various ways to extract the desired
properties.

Simulations

The methodology used throughout this thesis is Molecular Dynamics (MD) simulations [5,
60]. In that scheme, Newton’s equations of motion are numerically solved for a large number
of interacting particles (nowadays typically between 1000 and 100,000 particles). Statistical
averages can be measured from the obtained distributions of configurations and momenta to
extract thermodynamic properties. They could also be calculated by other sampling methods,
such as Monte Carlo, but the MD method, since it describes the real motion of the particles,
has the advantage that information on the dynamics of the system can be obtained. It is the
dynamical properties that we are mainly interested in: crystal growth rates in Part II and
diffusion coefficients in Part III.

Molecular dynamics simulations as just described can strictly speaking only yield trajec-
tories in the NV E ensemble (i.e., constant number of particles N, constant volume V , and
constant energy E), since Newton’s laws obey conservation of energy. Today several routines
are available to modify the dynamics of the particles such that systems can also be studied
in other ensembles [18, 87, 139]. This makes it easier to connect to experimental practices.
Simulations at constant temperature T , constant pressure P, or constant chemical potential
µ can now routinely be performed. We will use canonical (NVT ) ensemble simulations in
Chapters 2, 5, 7, 8, and 9 and NPT simulations in Chapters 2, 3, and 4. In the limit of
very large system sizes (the thermodynamic limit), all ensembles will give the same average
results. With the restriction of finite sizes inherent in simulations, however, a choice for the
most appropriate method has to be made in each particular case under study.
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In search of the macroscopic limit

In order to obtain macroscopic properties from simulations at microscopic time and length
scales, one has to take care to ensure that extrapolation of the results to the macroscopic level
is justified. Small discrepancies in the sampled distributions or in the averaging procedure
may develop into quantitative errors on large scales, and are therefore to be avoided. This is
particularly important when large collective motions play a role in the simulations, which is
the case in both our systems. In crystal growth simulations, entire planes of molecules are
restructuring and correlation lengths extend over several atomic diameters. The presence of
a crystal-melt interface, for example, induces structure far into the liquid. In the simulation
of transport in zeolites, collective motions are associated with the calculation of the transport
diffusivity.

As an example of changing behaviour with changing timescales, in Chapter 7 we study
the tracer diffusion of methane in the pores of AlPO4-5. These molecules are of such size that
they have great difficulty passing each other. For the mean square displacement of the parti-
cles we find a time dependence close to the theoretical value for particles that cannot pass at
all. On a very long timescale, however, the infrequent passings start to dominate the dynam-
ics and a normal diffusion regime is recovered. In other to reach this regime, we switch from
MD simulations to a coarse-grained hop-and-cross model, using input parameters derived
from the atomistic MD simulations.

Transport diffusion describes the collective motion of particles under the influence of a
concentration gradient. One intuitive way to try to calculate the transport diffusivity is to
impose a gradient and measure the resulting steady-state flux. One major problem, however,
is that gradients that are small on the microscopic level of the simulation are often extremely
large on a macroscopic level. For that reason, the system is likely to reach the regime where
it does not respond linearly anymore and does not obey the linear transport equation (in
this case Fick’s law). Therefore we look in Chapters 8 and 9 at equilibrium methods; we
study the decay of spontaneous fluctuations in the system and investigate how the measured
diffusivity depends on the wavelengths of the fluctuations. The regime where the diffusivity
is independent of the wavelength is then associated with linear response.

A similar situation arises in the calculation of a crystal growth or melting rate; this is also
a nonequilibrium property, which can be measured by applying a nonequilibrium condition
(e.g., a temperature below or above the melting temperature) and measuring the steady-state
rate with which the system grows in either direction. In our system with soft interactions,
however, the rates are so high that it is difficult to reach the proper steady state. Therefore,
we introduce in Chapter 2 an equilibrium method to extract the kinetic coefficient from the
fluctuations of the interface at equilibrium. The method is discussed in more detail in Chapter
5. In the interjacent chapters, we develop ways of setting up nonequilibrium simulations such
that they give the most accurate results (which can then be compared to the results from the
equilibrium method). Since the growth and melting rates are so high, the whole system soon
becomes occupied by one phase. Therefore the nonequilibrium simulations are restricted
to short run times and it is extremely important to set up a well-equilibrated interface right
from the start. In fact, we find two time-regimes: one in which the system relaxes to its
nonequilibrium steady-state, and one in which the macroscopic growth mechanism prevails.

8



INTRODUCTION

To summarize: the main scope of this thesis is to develop methods that can give reliable
results on macroscopic nonequilibrium properties. In order to do so, we look at equilibra-
tion procedures, system size effects, transformation of behaviour over timescales, and limits
imposed by assumptions of linear response. Both Part II and Part III start with a historical
overview of the relevant field, outlining the most relevant theories, and ending with an outline
of subsequent chapters.
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Part II

Growth and melting at the
Lennard-Jones (100) surface





1 Crystal growth investigations:
a historical perspective

In this chapter, a historical account will be given of investigations that led to
the present-day understanding of crystallization and melting processes. The fo-
cus will be on one-component crystals in contact with their pure melts. We will
describe the experiments that were carried out and the theories that were devel-
oped from the end of the nineteenth century up till the present day, occasionally
pointing at questions that remained open and anticipating the issues that will be
addressed in subsequent chapters. In the final section, an outline will be given of
the chapters to follow.

1.1 The early years

In the final decade of the nineteenth century, the theory of evaporation of liquids and con-
densation of gases had come to a close. The experiments of Th. Andrews on the volume
change upon evaporation of carbon dioxide up to the critical point of the coexistence line had
laid the foundation for the theoretical work of J.D. van der Waals. His masterpiece “Over
de continuı̈teit van den gas- en vloeistoftoestand”1 in turn formed the inspiration for many
experimentalists thereafter. It was shown that both the volume change ∆V and the latent heat
of evaporation ∆Hvap, following the liquid-vapour coexistence line, decrease with increasing
temperature and pressure. This goes on up to the critical point, where both ∆V and ∆H vap

vanish. Below the critical point, a substance separates into two isotropic phases; above, the
phases become indistinguishable and no separation occurs. Given the success of the van der
Waals theory, several scientists tried to translate it to the theory of crystallization, but it soon
turned out that every attempt to do so failed.

One of the first to anticipate that the transformation of a gas into a liquid might be fun-
damentally different from the transformation of a liquid into a crystal was Gustav Tammann.
At the beginning of the previous century, he covered a whole range of experimental data and
theoretical considerations in two subsequent books [164, 165]. He posed the hypothesis that
a critical point, where the crystal becomes identical to its melt, could not exist on the melt-

1 “On the continuity of the gas and the liquid phase”
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ing curve. The hypothesis was deduced from knowledge of the behaviour of substances in
isotropic and anisotropic phases, and was supported by experiments. He reported on find-
ings that, on the melting curve of sodium sulphate, ∆V goes through zero, while at the same
time ∆H remains positive. Conversely, by the transformation of two crystal polymorphs of
water, silver iodide, or phenol, despite substantial volume differences of the polymorphs, ∆H
goes through zero at a certain point on the transformation curve. Note that at that time, a
direct search for critical points on the crystal-liquid coexistence curve was out of reach: the
strongest known material by then was steel, which made it possible (in very small set-ups) to
reach pressures of 12000 kg=m2 maximum, still well below the pressures at which possible
critical points were expected.

Tammann clearly distinguished isotropic states of matter from anisotropic ones, thereby
strongly opposing to the use of the word ‘solid’. This was still used by many authors to refer
to both the crystalline and the glassy state, while those could already be clearly distinguished
experimentally. Glasses show anisotropic, scalar properties, while crystals display direction
dependent, vectorial properties. It was known that, in such anisotropic phases, molecules
vibrate around points that are ordered according to space groups. Tammann argued that since
there exists only a distinct, limited, number of space groups, it would not be possible to
have a continuous change between different states. A transformation of an isotropic to an
anisotropic state, or a transformation between two anisotropic states, must therefore proceed
discontinuously, thus ruling out the possible existence of a critical point.

Tammann reported on experiments where the growth of crystals in time was followed.
It was found that, for neatly conducted experiments, crystals grew at a constant rate, the
value of which was temperature dependent. In those days it had already been established
as common knowledge that the macroscopic shape of crystals depends very much on their
building history; if temperature distributions around the sample were different in separate
experiments, totally different macroscopic forms could evolve. Tamman concluded from
this that the temperature dependence of growth rates must differ for different directions of
growth. This was indeed shown experimentally to be the case. The first measurements of
growth rates at different temperatures were conducted by Gernez on rhombic and yellow
phospor [65] and by Moore on phenol and acidic acid [131]. Their finding that the growth
rate R increased with decreasing temperature T was first considered a mystery (!) since up
till then all transformation processes in nature had been found to slow down upon lowering
the temperature. Friedländer and Tammann did similar experiments on benzophenon, which
grows much slower, allowing them to study growth at as much as 100 degrees undercooling.
For low enough temperatures, the rates were shown to level off to a plateau value. This was
explained by the fact that growth in this case should be heat transport limited. Therefore the
bath temperature might be far off the actual temperature at the interface. Indeed, when the
test tube was taken smaller (allowing better heat transport away from the interface) higher
rates could be found.

The temperature dependence of the macroscopic crystal shape was neatly shown in ex-
periments by R. Nacken. He put a copper wire in an undercooled salol melt. (Salol is the
commercial name for phenyl-o-hydroxybenzoate, C6H4(OH)CO2C6H5, a crystalline ester
that is used as a stabilizer in plastics and medicines). At 0.5 degree undercooling, the crys-
talline surface was rounded off, showing that at very small undercooling, all growth rates
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become equal. When the undercooling was increased the crystal started to facet. At 1.5
degrees undercooling a nice polyhedron was found. If the undercooling was higher than 2
degrees the crystal became increasingly thread-shaped. The variance in rates had become so
large that the fastest growing planes disappeared from the outer shape.

Finally, in Chapter 9 of Tammann’s second book [165], he introduced some theoretical
considerations on the temperature dependence of growth and melting rates very close to equi-
librium. Based on considerations of heat transport, he predicted that the dependence should
be linear, with the same slope for crystallization and melting. This will be a major issue in
Chapters 3 and 4 of this thesis.

It is amazing how many of the issues and questions that are still around today (both in
simulations and in the interpretation of experiments) were already anticipated in some way
or another at the time Tammann wrote his volumes. To summarize, we mention the most
relevant ones for the present thesis:

� The temperature dependence of growth rates is different for different crystal planes.
(Since around the 1950’s, the distinction is made between equilibrium morphology,
which is the crystal shape that can be predicted from a consideration of binding en-
ergies of all surfaces, growth morphology, which is the actual shape that arises from
experimental growth conditions, and dissolution morphology which develops when ex-
isting crystals are (partly) dissoluted. See also Frank [59].)

� It is important to consider the possible influence of heat transport on growth and melt-
ing rates. A clear distinction should be made between the bath temperature and the
temperature at the interface.

� It was anticipated that the temperature dependence of growth and melting rates should
not change discontinuously upon crossing the equilibrium temperature. (Note that this
contains the implicit assumption that crystallization and melting are fundamentally the
same process.)

1.2 The Wilson-Frenkel theory

As soon as the influence of temperature conditions on the growth morphology was recog-
nized, people started to think about theories that could explain, or even predict, the trends
that were seen in experiments. The earliest theories concentrated on growth from the vapour,
since the rates are generally much lower and the crystal-vapour interface is far more acces-
sible for experiments. Hertz [83] and Knudsen [112] proposed that the net rate of growth
was just the difference between the rate of arrival of atoms and the rate of evaporation. The
analogue for melt growth was first given by Wilson [190], who assumed that particles had
to overcome a diffusional barrier in order to make the transition from the liquid to the solid
phase. The rate of incorporation of atoms in the crystal lattice is then given by

Rc(T ) = aνexp

�
� Q

kBT

�
; (1.1)

15



1. CRYSTAL GROWTH INVESTIGATIONS: A HISTORICAL PERSPECTIVE

Figure 1.1: Pictorial representation of the
incorporation of an atom from the liquid
(white circles) into a vacant site in the crys-
tal (grey circles). In a cartoon of the free
energy profile, the chemical potential dif-
ference between liquid and crystal is de-
picted, as well as the barrier to incorpora-
tion. The arrows represent the idea behind
the Wilson-Frenkel theory that the barrier to
incorporation is equal to the barrier to self-
diffusion in the liquid.

with a some characteristic length, ν the attempt frequency and Q the diffusional barrier.
This process is counteracted by particles that move from the crystal to the liquid. Since

the Gibbs free energy per molecule, the chemical potential µ = G=N, is higher in the liquid
than in the crystal, the rate of melting will be smaller than the rate of crystallization by a
factor exp(�∆µ=kBT ):

Rm(T ) = aνexp

�
� Q

kBT

�
exp

�
� ∆µ

kBT

�
: (1.2)

Note that it is implicitly assumed that the attempt frequency for both processes is the same.
Wilson took ν to be equal to the frequency of atomic lattice vibrations. The net rate of growth
is thus given by:

R(T ) = Rc(T )�Rm(T ) = aνexp

�
� Q

kBT

��
1� exp

�
� ∆µ

kBT

��
: (1.3)

Independently, Frenkel [61] derived a similar expression where the activation barrier was
based on the viscosity of the melt. The Wilson and Frenkel formulae can be shown to be
equivalent using the Stokes-Einstein formula derived by Einstein in his famous 1905 article
[50], where the self-diffusion coefficient is related to the viscosity:

νa2 exp

�
� Q

kBT

�
= D =

kBT
6πηa

: (1.4)

The idea behind equating the activation energy for diffusion with that for incorporating
an atom in the crystal is illustrated in Fig. 1.1. For both processes the atom needs to break out
of the cage of neighbours in the liquid. Note that D in this case stands for the self -diffusion
coefficient, associated with the motion of a ‘tracer’ particle surrounded by a bulk of like
particles. Self diffusion does not represent net transport, hence the diffusional barrier in the
Wilson-Frenkel theory should not be confused with so-called ‘diffusion limited growth’. The
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latter can be encountered in growth from solution when the collective diffusion coefficient
is so small that material transport to the interface becomes rate limiting. This distinction is
often not made clear when the Wilson-Frenkel formula is discussed in the literature. (For a
more general account of self- and transport diffusion, see Chapters 8 and 9).

In most present-day representations of Eq. 1.3, one finds not the chemical potential µ,
but the latent heat of fusion per atom l (which can be measured experimentally). The latent
heat of fusion is the amount of energy released during crystallization at the melting point at
constant pressure, and consists of an internal energy part and work done on the crystal:

l = ∆u+P∆v= ∆(u+Pv)P = heq
l �heq

s : (1.5)

At equilibrium, the chemical potential µ = G=N = h�Ts of both phases is equal, so that

l = T eq �seq
l � seq

s

�
=�T eq

��
∂µl

∂T

�eq

P
�
�

∂µs

∂T

�eq

P

�
; (1.6)

showing that the crystal-liquid transformation is a first-order phase transition (because there
is a discontinuity in the first derivative of the thermodynamic potential). Now, expanding ∆µ
up to first order in the temperature around equilibrium leads to:

∆µ = µl �µs � µeq
l +

�
∂µl

∂T

�eq

P
(T �T eq)�µeq

s �
�

∂µs

∂T

�eq

P
(T �T eq)

= � l
T eq (T �T eq): (1.7)

Finally, the Wilson-Frenkel formula can be transformed to give

RWF(T ) = f d
Dself(T )

λ2

�
1� exp

�
l

T eq

(T �T eq)

kBT

��
; (1.8)

where d stands for the interlayer spacing, λ the diffusional mean free path, and f the effec-
tiveness facter, which is included to account for the effect that not all atoms that cross the
boundary will stick there and/or not all sites on the surface might be active growth sites. It
should be remembered that the above formula is an approximation and therefore principally
more limited to temperatures close to equilibrium than Eq. 1.3.

Jackson in 1975 [94] followed a slightly different route to derive an analogous expression,
which in the end contains an extra entropy factor. He suggested that ∆µ in Eq. 1.3 should be
replaced with the enthalpy of fusion per atom, l. For the transformation rate from crystal to
liquid, he wrote

Rm = R0
m exp

�
� Q

kBT

�
exp

�
� l

kBT

�
; (1.9)

and for the reverse process

Rc = R0
c exp

�
� Q

kBT

�
: (1.10)
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From the equilibrium condition [Rm(T eq) = Rc(T eq)] one can derive

R0
c = R0

m exp

�
� l

kBT eq

�
: (1.11)

Taking the prefactor R0
m equal to aν and taking the net rate as the difference between the two

competing rates leads to

RJ(T ) = aνexp

�
� Q

kBT

�
exp

�
� l

kBT

��
1� exp

�
� l(T �T eq)

kBTT eq

��

� aνexp

�
� Q

kBT

�
exp

�
�∆s

kB

��
1� exp

�
� l(T �T eq)

kBT T eq

��

) f d
Dself(T )

λ2 exp

�
�∆s

kB

��
1� exp

�
� l(T �T eq)

kBT T eq

��
; (1.12)

where in the last line the effectiveness factor f has again been included. In a study of silicon
solidification and melting with the Stillinger-Weber potential, Grabow et al. [68] showed that
the Jackson modification (Eq. 1.12) behaved better than the original Wilson-Frenkel form
(Eq. 1.8). In fact, it is this Jackson form that most people refer to when discussing the
Wilson-Frenkel theory.

1.3 Microscopic models

Though the Wilson-Frenkel theory was motivated by microscopic considerations (like the
barrier to diffusion and the description as two competing processes at the interface), it is
basically thermodynamic by nature. For instance, it is not easily seen how one could extend
it to account for different growth rates of different interfaces (except, perhaps, via the lattice
spacing d and the effectiveness factor f ). It was soon recognized that more microscopic
theories would be necessary. People started thinking about the details of the interface and
realized that if a crystal had smooth faces (even at the atomistic level), growth would proceed
by the formation of islands on the surface and subsequent growth of the islands. In that case,
the nucleation of islands would be rate limiting and not the incorporation of atoms at random
lattice sites. In fact, it was Gibbs who already suggested that “there could be a difficulty in
the formation of a new layer”, but that remark ended up in a footnote of his work [66] and
was overlooked for decades.

The process of two-dimensional nucleation depends on the chance that two atoms on a
surface meet. The growth rate would then be proportional to (∆T )2 = (T � T eq)2 instead
of linear in ∆T (as Tammann suggested for all growth close to equilibrium). These ideas
were first tested for growth from the vapour, where conditions are normally such that surface
diffusion is fast compared with the deposition of atoms. Indeed, experimental observations
clearly showed the quadratic dependence. Quantitative rates, however, were always much
higher than predicted, a problem which long remained unexplained. A breakthrough came
when Frank [58] pointed out that lattice misfits might play a major role in growth. He sug-
gested the mechanism of spiral growth in the following words: “The presence of a dislocation
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with a component of its Burgers vector normal to the crystal surface provides, around its point
of emergence, a perpetual step that can move but which cannot be eliminated by growth”. In-
deed, with his theory, rates were predicted that were in close agreement with experimental
observations. But, even in vapour growth, which mostly proceeds by the above mechanism at
smooth surfaces, it is possible to find a regime where the smoothness of the interface is lost.
At very large undercoolings, the deposition of atoms on the surface can become so fast that
it exceeds the rate of diffusion along the surface. In that case, atoms are incorporated at any
point on the surface and the growth rates are linear in ∆T . This transition is called kinetic
roughening. A comprehensive account of all early theories on vapour growth processes was
published in the famous paper by Burton, Cabrera, and Frank [33].

Jackson pointed out that for a crystal growing from its melt, the equilibrium interface
structure is that which is in equilibrium with both the crystal and the melt [93]. Applying a
simple mean-field approach to a single-layer model of the interface, he developed a qualitative
understanding of the roughening transition (i.e., the temperature below which the interface
is smooth and above which the interface is atomically rough). We will briefly sketch the
derivation here, largely following the representation of Saito [152] (with somewhat different
notation).

In the Jackson model, the interface is described as a collection of N sites on which Ns

atoms are adsorbed. Each site has a coordination number zs. On average, for each atom,
(1�Ns=N)zs neighbouring sites are empty, which corresponds to an energy cost (with respect
to a totally filled, smooth lattice) of

∆U =Ubond(1�Ns=N)zsNs; (1.13)

where 2Ubond is the energy associated with one ‘crystal bond’ between neighbouring atoms.
(In this crude model, only nearest-neighbour interactions are taken into account). Apart from
the energy cost, there is an entropy gain associated with the number of configurations that Ns

atoms can take on N sites:

∆S = kB lnΩ = kB ln
N!

Ns!(N�Ns)!
� kB [N lnN�Ns lnNs� (N�Ns) ln(N�Ns)] ; (1.14)

where we have used Stirling’s approximation to lose the factorials.
The bonding energy Ubond is related to the latent heat per atom l by l = zUbond, where

z is the coordination number in the bulk crystal. Now Jackson introduced the roughening
temperature as

TR =
zsl

2zkB
: (1.15)

The free energy difference ∆F = ∆U �T∆S between the smooth interface and the interface
with Ns atoms adsorbed can now be expressed as a function of the fraction of occupied sites
φ = Ns=N:

∆F
NkBTR

= 2φ(1�φ)+
T
TR

ln(1�φ)� T
TR

φ ln

�
1�φ

φ

�
(1.16)
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Figure 1.2: Free energy between the smooth
and the non-smooth interface as a function
of the fraction of occupied sites. Shown are
various temperatures; from top to bottom:
T=TR = 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4, re-
spectively.

The relationship is shown graphically in Fig. 1.2. It can be seen that for T < TR there are two
free energy minima, corresponding to an almost empty and an almost full interface (both can
be regarded smooth). For T > TR, there is one minimum at φ = 0:5, corresponding to a rough
interface.

Jackson also introduced a parameter α (the ‘Jackson α-parameter’) which is a material
property, but also depends on the specific crystal plane (via the surface coordination number
zs):

α� zsl
zkBT eq =

2TR

T eq (1.17)

For surfaces with α > 2 the melting point is below the roughening temperature and the in-
terface should be flat at all temperatures. If α < 2, the interface should be rough when the
experiment is carried out at temperatures sufficiently close to equilibrium. For all metallic
crystal-melt interfaces α< 2, and rough growth is indeed found experimentally. For some or-
ganic crystals, like salol and glycerol, smooth interfaces are found. The Lennard-Jones (100)
interface which is the main topic of this thesis has values zs = 4, z = 12, and l = 1:115 ε=kB,
which leads to a roughening temperature of TR = 0:186 ε=kB , well below the melting tem-
perature of T eq = 0:6972 ε/kB (at a pressure of P = 2:512�10�3 ε=σ3). For the calculation
of these Lennard-Jones bulk properties see Chapter 5.

It is obvious that the Jackson model is an oversimplification. It accounts for only one layer
and treats every site equivalently. Many improvements have been made upon the model, such
as including the possibility of multiple layers. This was done first by Burton, Cabrera, and
Frank [33] and later by Temkin [167]. Although all kinds of critical phenomena change when
more detail is included in the model, the roughening temperature does hardly change quanti-
tatively. Thus the Jackson parameter remains a convenient criterion for surface roughening.

Around the 1960’s, many of the existing ideas and theories on growth from the melt were
collected in the papers by Jackson and Chalmers [35, 92]. To summarize, the possible types
of crystal growth had been grouped into three classes:

rough growth When the temperature of the experiment is below the melting temperature but
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above the roughening temperature, the interface is rough and the growth rate depends
linearly on the temperature: R(T ) ∝ ∆T .

smooth growth When the temperature of the experiment is below the roughening temper-
ature, the surface is smooth and the process of crystallization is governed by two-
dimensional island nucleation and surface diffusion. Incorporation of atoms is most
likely at steps and kinks on the surface. The spiral growth mechanism, in which
steps cannot grow out of the surface, accounts for the moderate rates that can still
be observed. The growth rates are proportional to the square of the undercooling:
R(T ) ∝ (∆T )2.

kinetic roughening Even for initially smooth surfaces, at very large undercoolings the inter-
face can become rough because the rate of arrival of atoms at the surface exceeds the
transport by surface diffusion. The growth rates again become linear in the undercool-
ing: R(T ) ∝ ∆T .

The above state of theories in the 1960’s would seem to present a clear starting point for
experimental observations (and possible falsifications). This was a serious problem, however,
since the solid-liquid interface is hardly accessible to experiments, both in terms of the loca-
tion of the interface and of measuring the actual interface temperature. At this point in time,
in order to be able to test existing theories, new methods had to be found that could provide
information with atomic detail.

1.4 Computer experiments

With the advent of molecular dynamics simulations by Alder and Wainwright [2,3] in the late
1950’s, a whole new route was opened to investigate the dynamics of atomistic systems. By
solving the many-body problem numerically for a few hundred hard spheres, they were able to
test and reproduce the results of several existing analytic theories. For equilibrium properties
an alternative route was already available in the Monte Carlo method, but the advantage
of being able to follow the dynamic evolution of the system was obvious. Already in a
preliminary letter (before the method was described in detail), they reported on the discovery
of a phase transition in the hard sphere system [2]. This was clearly a remarkable result and
a great promise for future applications of the method.

In their 1959 paper [3] they report, besides on the advantages, also on the limitations of
the method, some of which play a major role in the present thesis. They argue: “In phase tran-
sition regions the artificial inhibition of density fluctuations caused by maintaining a constant
number of molecules in the box can be serious”, and “... in order to examine the properties of
a heterogeneous system it is necessary to use many more particles than in the case of a single
phase system”.

Mainly due to the above limitations and the state of computer technology, it took a long
time before the properties of the interface between two thermodynamic phases could be ex-
amined by molecular dynamics simulations. Among the first to do so were Ladd and Wood-
cock [116] in 1977, who managed to create a 3-phase Lennard-Jones system at the triple
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point. They employed a hard wall on one side of the box and a free boundary on the other
side, while employing periodic boundary conditions in the remaining two directions. The
results were shown to be in reasonable agreement with Monte Carlo results of Hansen and
Verlet from 1969 [77]. This can be seen as the first demonstration of the possibility to si-
multaneously simulate both bulk and surface with the limited system sizes manageable in
molecular dynamics. Reservations were made, however, to the exact quantitative data. In-
deed, in a subsequent paper [117] they showed that more extensive equilibration resulted in
significant changes in the coexistence properties. However, the basic conclusions about the
nature of the crystal-liquid interface remained unchanged. From a detailed examination of
the density profiles, it was found that the solid-liquid interface of the Lennard-Jones system
was significantly more diffuse (extending over 7 to 8 atomic diameters) than was usually as-
sumed. The authors justly stated that their profiles represented a thermal average and could
therefore not unequivocally decide upon the validity of existing theories, but the power of
the molecular dynamics method in the study of interfaces was established. (Note that we will
address the issue of the difference between time-averaged and instantaneous interface profiles
in Chapter 5, Sec. 5.5).

The study of the Lennard-Jones solid-liquid interface was taken over by a former student
from the group of Woodcock, Jeremy Q. Broughton [26]. First together with Bonissent and
Abraham and later with Gilmer and Jackson, a series of papers were published which are still
heavily cited today [27–32]. They performed an extensive study of the bulk properties of the
Lennard-Jones FCC crystal and liquid. Subsequently they studied steady-state growth rates
for the (100) and (111) face at several temperatures (albeit all below the melting temperature),
and finally calculated the excess surface free energy. In their study of the temperature depen-
dence of growth rates for the (100) surface, they tried to fit their data to the Wilson-Frenkel
formula. They concluded however, that no energy barrier could be found that prevents the
liquid atoms from reaching the lattice sites. Instead they proposed a new form, where the
diffusion factor in the Wilson-Frenkel formula is replaced by a factor proportional to the av-
erage thermal velocity of the atoms, which could be fitted to give excellent agreement with
their data:

R(T ) =
d
λ

�
3kBT

m

�1=2

f0

�
1� exp

�
� ∆µ

kBT

��
; (1.18)

where λ is the actual mean distance the particles have to travel (taken to be 0.4 times the
interlayer spacing d) and f0 is an effectiveness parameter which was fitted at 0.27.

After the evident success of the above investigations, many more simulations followed on
various crystal/liquid systems. At this point we will name only a few: Crystal growth rates
were measured in the Lennard-Jones system (growth from pure melts and/or solutions) by
Báez and Clancy [7] and Huitema et al. [88–90], in metallic crystal-melt systems (Na and Si)
by Kluge, Tymczak, and Ray [111, 177, 178], and in the hard-sphere system by Mori [132].
Detailed measurements of the interface structure were performed in the Lennard-Jones sys-
tem by Huitema et al. [90], in the hard-sphere system by Davidchack and Laird [45, 46],
in aluminium by Jesson and Madden [96, 97], and in the water/ice system by Hayward and
Haymet [82]. Besides molecular dynamics, several other methods have been applied to un-
derstand the atomic processes at the interface, such as lattice gas models [133], and (dynamic)
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Density Functional Theory [141, 157–159]. At this point, we will not go into further detail
of those recent investigations. The relevant papers will be discussed at appropriate points in
subsequent chapters. For further reading we refer to a number of reviews [81, 95, 118, 121]
and books [124, 152] and references quoted therein.

1.5 Outline of subsequent chapters

In this part of the thesis our main concern will be how to calculate the correct rates of growth
and melting in the macroscopic limit from molecular dynamics simulations. As a model
system we will use the Lennard-Jones FCC (100) surface in contact with its pure melt.

The obvious choice for the setup of a simulation would be one that resembles a real
experiment as closely as possible. A system could be constructed with two phases in contact
with each other. This system could be initiated at a desired off-equilibrium state point and
the growth (or melting) rate could then be measured while running at constant temperature
and pressure. There are, however, several problems associated with such a nonequilibrium
simulation. For instance, it is not trivial to construct and maintain a nonequilibrium steady
state or to impose a gradient in the box that is both large enough to obtain good measurements
and small enough to represent macroscopic gradients. Second, unless countermeasures are
taken, the length of a growth simulation is basically limited to the time over which the whole
simulation box becomes crystalline, which imposes severe limitations to the accuracy that
can be reached even at moderate amounts of undercooling or superheating.

For the above reasons we will develop an alternative route in Chapter 2. We will present
a method to extract the nonequilibrium kinetic coefficient for growth from the fluctuations
of the interface in an equilibrium simulation. We will show that good agreement can be
reached between the predictions of this method and the results from seperate nonequilibrium
simulations. The equilibrium method has as its main advantage that the simulations can
essentially be run ad infinitum, providing as accurate statistics as one wishes.

The proposed method will only be feasible in cases where the temperature dependence
of the growth rates is linear and does not show a slope-discontinuity upon crossing the equi-
librium temperature. The linear dependence of T is fulfilled for any face growing above the
roughening temperature, which is the case for our model system (see Sec. 1.3). Although
it was early anticipated (see Sec. 1.1) that a slope discontinuity of growth and melting rates
could not exist, this has been the source of much debate in the literature. A singularity at
the melting temperature was for instance claimed by Tymczak and Ray [177, 178] in their
study of crystallization and melting kinetics of sodium. We will investigate this in Chapter
3, where we study growth and melting rates close to equilibrium by means of nonequilibrium
simulations. We will look closely at the influence of the equilibration procedure, connecting
with the observation of Ladd and Woodcock (Sec. 1.3) that different equilibration times can
result in significant changes in the coexistence properties (though they did not look at dynam-
ics). We will show in our simulations that improper equilibration of the two-phase system
can lead to an apparent slope discontinuity, which can entirely be explained by the difference
in the amount of lattice imperfections between the bulk crystal and the crystal as used in the
two-phase simulations.
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In Chapter 4, we will elaborate on this finding and present very accurate simulations of
the growth and melting rates close to equilibrium. We will rule out the existence of a slope
discontinuity for the Lennard-Jones (100) surface. We will also do a study of the effect of
system size on the growth kinetics, relating to the remark by Alder and Wainwright (Sec. 1.3)
that “in order to examine the properties of a heterogeneous system it is necessary to use many
more particles than in the case of a single phase system”. We will report on the discovery of
two regimes of linear growth: a short-time regime which is associated with interface relax-
ation and a long-time regime associated with the macroscopic limit of growth and melting.
For sufficiently large simulation systems both regimes can in principle be measured. In a
system of 8:044σ�8:044σ�69:595σ (4048 atoms) — which is already larger than used in
most simulations — the initial regime lasts much longer than in a system of twice the size
in the growth direction. This makes an accurate calculation of the long-time dynamics in the
smaller system rather difficult.

Given the accurate measurements of both regimes from the nonequilibrium simulations,
we return to the equilibrium method in Chapter 5. Although very long simulations are re-
quired to obtain accurate autocorrelation functions over a sufficiently large time interval,
the equilibrium method also shows two regimes. The kinetic coefficients for both the inter-
face relaxation and the long-time dynamics agree well with the nonequilibrium results. The
derivation of the method as proposed in Chapter 2 is reconsidered and slightly modified. A
factor that could previously only be calculated by reference to separate bulk simulations is
now replaced by a correlation function relating number fluctuations to pressure fluctuations,
which can directly be measured from the equilibrium two-phase simulation.
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2 Equilibrium and nonequilibrium
simulations

On the basis of Onsager’s hypothesis a new method is presented to calculate
growth rate constants of various crystal faces from the fluctuations of interfaces
during NVT simulations. The method is applied to the (100) face of a Lennard-
Jones crystal grown from the melt. The results are in good agreement with those
obtained by means of NPT nonequilibrium simulations. The new method allows
for much better statistics at the cost of much less computation time. The use of
Onsager’s hypothesis to derive the microscopic expression for the growth rate
constant may serve as an example for applications in other fields.�

2.1 Introduction

The study of growth rates of crystals from their melt, or from supersaturated solutions, besides
being an interesting theoretical problem, is of importance for the prediction of macroscopic
growth morphologies of crystals. The rheological properties of particulate systems, be it
liquids in which small crystallites are suspended or just granular materials consisting of small
crystallites, very much depend on the morphologies of the crystallites.

Since the crystal-melt interface, being a combination of two dense phases, is not easily
accessible to experimental measurements, molecular dynamics simulations can be of great
help in the study of these systems. Several studies of the crystal-melt interface of Lennard-
Jones systems, consisting of atoms which interact by pairwise potentials of the form

ΦLJ(r) = 4ε
��σ

r

�12
�
�σ

r

�6
�
; (2.1)

have been reported in the literature, mainly by Broughton, Gilmer et al. [28–32]. Among
other things, they performed nonequilibrium molecular dynamics simulations to calculate
the growth rates of various crystal faces over a wide range of temperatures below the melting
point. In this chapter, we present a method to calculate growth rates from fluctuations of the
interface during an equilibrium simulation. We have applied this method to study the growth

� The work described in this chapter previously appeared in Phys. Rev. Lett. 79(25), 5074 (1997). [25]
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Figure 2.1: Distribution of the recognition
function Ψ in bulk solid (solid line, left
scale) and in bulk liquid (dashed line, right
scale).

rate of the (100) face of a Lennard-Jones crystal growing from its melt, and checked the
results by performing nonequilibrium simulations for very small deviations from equilibrium.

2.2 Solid-liquid recognition

In order to be able to decide whether a particle belongs to the crystal or to the melt, we
have constructed a very simple recognition function. What distinguishes a particle in an FCC

crystal from a particle in the liquid, is the fact that its surroundings have octahedral symmetry.
We therefore have constructed, using the methods of Ref. [23], a function X(r), which for
every vector r pointing from the particle under investigation to one of its nearest neighbours,
in a perfect crystal, takes the same value. When the fourfold symmetry axes of the octahedron
are chosen along the three Cartesian axes, the simplest such function reads

X(r) =
x4

jrj4 +
y4

jrj4 +
z4

jrj4 �
3
5
: (2.2)

The order parameter Ψ, which discriminates between crystal and liquid particles was next
defined by

Ψ =

s
hX2i�hXi2

hXi2 ; (2.3)

where the averages were taken over all nearest neighbours residing within a cut-off radius of
1.39 σ. A slight amelioration was obtained by referring the positions of the neighbours, not
to the central particle, but to the center of mass of the neighbours. The distributions of the
values of Ψ during a simulation of a pure crystal and a simulation of a pure liquid are plotted
in Fig. 2.1. It is seen that by calling crystal particles those particles for which Ψ < 0:5 and
liquid particles those for which Ψ > 0:5, a perfect discriminator is defined. It is important to
realize that crystalline structure will partly persist in the liquid phase near the interface. As
a result our discriminator could slightly overestimate the number of solid particles. On the

26
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other hand, crystalline particles in the interface that ‘see’ a crystal on one side and a liquid on
the other, will not be classified as solid-like. This effect could lead to an underestimation of
the number of solid particles. Overall, we expect that changes in the number of solid particles
with respect to the average value will be correctly monitored.

2.3 Equilibrium simulations

In the case of simple monoatomic systems the melting temperature is found to be above the
roughening transition (see also Sec. 1.3). Growth occurs at any point on the surface, and
the growth mode is called normal growth [16, 35, 124]. In the case of small deviations from
equilibrium, the growth rate of such a surface is proportional to the difference of the chemical
potentials of the liquid and the solid phases, i.e.,

R = k d
µl �µs

kBT
; (2.4)

where d is the interplanar distance parallel to the interface. The growth rate is related to the
increase of the number of solid particles dNs=dt by

R =
d

A=a
dNs

dt
; (2.5)

with a the specific area taken by a solid particle, and A the total area of the surface.
When the system is in equilibrium, no net growth takes place, and on average R equals

zero. Instantaneous fluctuations of the number of solid particles do occur, however, and their
dynamics is related to the above equations by means of Onsager’s hypothesis. This hypothesis
states [24,36] that “slow equilibrium fluctuations on average decay according to macroscopic
laws”. We now first derive the macroscopic laws governing the relaxation of a small deviation
∆Ns = Ns �Neq

s of the number of solid particles from its equilibium value N eq
s , in a closed

system with constant volume and constant temperature. First we relate the difference between
the chemical potentials occurring in Eq. 2.4 to the deviations from equilibrium of the molar
volumes of both phases:

µl �µs =� 1
κl

∆vl +
1
κs

∆vs; (2.6)

where κ is the isothermal compressibility. In order to calculate ∆vl and ∆vs we use the
following relations

(Neq
l �∆Ns)(v

eq
l +∆vl)+(Neq

s +∆Ns)(v
eq
s +∆vs) =V; (2.7)

∆vl

veq
l κl

=�∆P =
∆vs

veq
s κs

; (2.8)

where Neq
l =N�Neq

s . The second of these equations expresses uniformity of pressure during
the simulations. This means that we assume that pressure gradients relax much faster than
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Figure 2.2: Normalized time-dependent au-
tocorrelation function of ∆Ns. Timescale in
units of (mσ2=ε)1=2.

the timescales we are interested in. Solving Eqs. 2.7 and 2.8 for ∆vl and ∆vs to first order in
∆Ns, and using the result in Eqs. 2.4 – 2.6, we obtain

d∆Ns

dt
=�1

τ
∆Ns; (2.9)

1
τ
= k

A=a
N

( �
veq

l � veq
s
�2

veq
s κs f eq

s + veq
l κl f eq

l

)
1

kBT
; (2.10)

where f eq
l = Neq

l =N and f eq
s = Neq

s =N. Eq. 2.9 says that ∆Ns decays from its initial value
according to a simple exponential law.

We are now in the position to make use of Onsager’s hypothesis in the form h∆Ns(t)i∆Ns(0)
= ∆Ns(0)expft=τg, from which we find

C(t) =
h∆Ns(t)∆Ns(0)i
h∆Ns(0)2i = exp

n
� t

τ

o
: (2.11)

All simulations were done with the GROMOS87 package [19]. First, separate NPT sim-
ulations with P = 2:546�10�3 ε=σ3 and T = 0:646 ε=kB were carried out for a crystal and
a liquid. The rates with which velocities and box volume were rescaled [18], were con-
trolled by the relaxation times τT = 0:0747 (mσ2=ε)1=2 and τP=κ = 222:6 (mε)1=2=σ2, with
m the particle’s mass. The timestep of the numerical integration of Newton’s equations was
∆t = 0:0015 (mσ2=ε)1=2. The temperature was close enough to the equilibrium temperature
for no structural changes to occur during neither of the two simulations. Next, the crystal
box was surrounded by two liquid boxes along the y-axis. Subsequent simulations were done
in the NV T ensemble with T = 0:646 ε=kB; the number of particles was 1378, and the box
dimensions were Lx = Lz = 8:069 σ and Ly = 24:206 σ. Note that two interfaces occur in the
box and that A in Eqs. 2.5 and 2.10 denotes the total surface area.

Correlation function C(t) from Eq. 2.11 is plotted in Fig. 2.2. After a short transient
time of about 1:5 (mσ2=ε)1=2, this correlation function decays exponentially with time con-
stant τ = 9:887 (mσ2=ε)1=2, which amounts to k = 0:5269 (mσ2=ε)�1=2. The value of
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Figure 2.3: Characteristics of a growing
crystal. The ascending line denotes the
number of solid particles and the de-
scending line the number of liquid parti-
cles. Timescale in reduced units. T =
0:612 ε=kB.
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k was calculated from Eq. 2.10, using d = 0:8113 σ, veq

s = 1:0564 σ3, veq
l = 1:200 σ3,

κs = 0:00428 σ3=ε, κl = 0:01412 σ3=ε, Neq
s = 540:7, and Neq

l = 837:3. veq
s , veq

l , and d
were measured from the bulk parts of the respective phases in the equilibrium simulation; κl

was calculated using the equation of state given by Nicolas et al. [136]; κs was calculated
according to κs=κl = ∆vs=∆vl � vl=vs with vs and vl the specific volumes of the initial solid
and liquid boxes, and ∆vs = veq

s � vs and ∆vl = veq
l � vl; Neq

s and Neq
l were calculated from

Neq
s veq

s +Neq
l veq

l =V and Neq
s +Neq

l = N.
It is seen that for times larger than about 11 (mσ2=ε)1=2, large deviations from exponential

decay occur. These deviations possibly reflect the influence of long-time temperature oscilla-
tions, caused by insufficient removal and supply of latent heat of crystallization and melting,
respectively. They can further be due to insufficient statistical sampling of the longer corre-
lation times (in Chapter 5 we will review the method in much more statistical detail).

2.4 Nonequilibrium simulations

In order to check our results, we have done nonequilibrium simulations in the NPT ensemble
with P = 2:546�10�3 ε=σ3 at various temperatures around the equilibrium temperature. An
example of the evolution of Ns(t) with time during such a simulation is given in Fig. 2.3. The
fact that Ns is a linear function of time means that we have well succeeded in keeping constant
the nonequilibrium conditions. Applying parameters for argon, the growth rate amounts to
14 m=s in good agreement with the results of Burke and Broughton.

For small deviations from equilibrium we may write

R =� k d
heq

l �heq
s

kBT eq

∆T
T eq ; (2.12)

i.e., the growth rate is proportional to ∆T = T �T eq. In Fig. 2.4, the growth rates obtained
for various temperatures are collected. The straight line is obtained from Eq. 2.12 using k
from the equilibrium simulation and heq

l �heq
s = 1:01 ε. heq

l and heq
s were obtained from short

NV T simulations at the respective equilibrium densities and T = 0:646 ε=kB. It is seen that
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this line very well represents the data, and that therefore the equilibrium and nonequilibrium
simulations are in good agreement with each other.

2.5 Discussion

The error bars in Fig. 2.4 roughly indicate the maximum and minimum values of the corre-
sponding growth rates. For large values of j∆T j the system rapidly melts or crystallizes. As
a result the runs are very short and the difference between maximum and minimum slopes
are relatively large. One way to obtain better statistics is to repeat the same simulation sev-
eral times. A second way might be to use much larger boxes. This however is not an easy
task because with such large growth or melting rates it will become increasingly difficult to
maintain constant nonequilibrium conditions. As a consequence the nonequilibrium method
which asks for many simulations for many different values of ∆T is much more costly than
one equilibrium simulation. We will come back to these remarks in Chapters 4 and 5.

One disadvantage of the equilibrium method is that the (finite size) equilibrium tempera-
ture must be known fairly accurately, in order for the pressure not to change too much during
the initial part of the NV T run. As a final remark we notice that the relaxation time which
is actually measured, i.e., the relaxation time τ, is proportional to N=A, i.e., to the box size
normal to the interface. This size must therefore not take part in the thermodynamic limit.
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3 The crucial role of lattice
imperfections

In this chapter, we present nonequilibrium simulations of growth and melting of
the atomic FCC (100) interface. Using Nosé-Hoover dynamics we have carefully
studied size effects and approximated the dynamics of the solid-liquid interface
in a large system as closely as possible. This led to a clear asymmetry of growth
and melting rates close to equilibrium. It was possible to explain these findings
in terms of the lattice imperfections in crystalline phases in contact with a liq-
uid phase, which automatically developed during growth simulations but were
absent in the melting simulations. It was shown that when melting simulations
were started with appropriate starting configurations, the asymmetry could be
made to disappear.�

3.1 Introduction

Although much is known about the thermodynamics of the solid-liquid phase transition, the
kinetics of this transition is still poorly understood. Part of this is due to the fact that, being a
combination of two dense phases, the crystal-melt interface is not easily accessible to experi-
ment. Therefore, computer simulations can be of great help in understanding the microscopic
processes involved in crystallization or melting. Over the past few years, excellent reviews
have appeared on computer modelling and on theories of the structure and dynamics of the
crystal-liquid interface [95, 118, 121].

Most crystallization and melting processes are heterogeneous, i.e., they involve the mo-
tion of an interface throughout the system. Among the first to make an extensive study of this
process, were Broughton et al. [28–30, 32]. They combined the solid and the liquid phase
in one simulation box and calculated growth rates over a wide range of temperatures. They,
however, did not study melting.

In Chapter 2 [25], we studied the steady state velocity of the interface in a Lennard-
Jones system at small undercoolings and superheatings. We established growth and melting
rates as a function of the deviation from equilibrium by performing several nonequilibrium

� The work described in this chapter previously appeared in J. Cryst. Growth. 230(1-2), 270 (2001). [169]
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simulations. On the basis of Onsager’s regression hypothesis, we were able to obtain the
same information from fluctuations of the amount of crystalline material during one single
equilibrium simulation. The same (universal) procedure was later succesfully applied to the
calculation of transport diffusion of guest molecules in a zeolite (see Chapter 8 [86]).

Over the past fifteen years much debate has evolved on the question whether the inter-
face response should be symmetric around the equilibrium temperature. An argument on the
basis of microscopic reversibility, already presented in the sixties [180], concluded that if
molecules are added to or taken from similar interface sites, then the curves of crystallization
rate and melting rate versus temperature should be continuous with the same slope through
the melting temperature. The debate was initiated again, however, by Tsao et al. [176] who
reported experiments of laser-induced zone melting of silicon, in which growth of the melt
into the superheated solid appeared to be much faster than growth of the crystal into the under-
cooled liquid. Since they dealt with large deviations from equilibrium, no sharp conclusion
can be drawn about a possible slope discontinuity at equilibrium.

Kluge and Ray [111] performed molecular dynamics simulations of crystallization and
melting of silicon. They employed a Stillinger-Weber potential and considered large devi-
ations from equilibrium. Their results show the same trends as the experiments by Tsao.
Tymczak and Ray [178] did similar simulations on sodium crystals having BCC symmetry.
They found a clear slope discontinuity at equilibrium with melting being substantially faster
than crystallization. However, since they mimic the electron density dependence of the inter-
actions by changing the potential with temperature, it is impossible also in this case to draw
any conclusions about the occurrence of an asymmetry between growth and melting rate in
systems interacting via Lennard-Jones potentials.

The only careful investigation at small undercoolings and superheatings was presented
by Moss and Harrowell [133]. They performed dynamic Monte Carlo simulations of the
FCC lattice gas and studied freezing and melting of the simple cubic phase. Besides a clear
slope discontinuity, they also found a small range of supercoolings where the growth velocity
essentially vanished.

From all of the above, no clear picture arises of the possibility or impossibility of a slope
discontinuity in the interface response near equilibrium. In this chapter, we will present
detailed measurements of the growth and melting rates in an atomistic simulation and will
address some of the subtleties that arise in doing such simulations. We will show that a
slope discontinuity arises when starting growth and melting simulations from well equili-
brated liquid and solid phases. The discontinuity will be seen to disappear only when lattice
imperfections occurring in rapidly growing crystals are also taken into account in the melting
simulations.

3.2 Interaction model

To avoid possible complications with long-range attractions (which would lead to different
long-range corrections in bulk and two-phase systems), we required a pair potential which
is exactly zero beyond a certain cut-off radius. To this end, we employed the shifted force
12-6 potential as introduced by Clarke et al. [39] (where it has the general form of an n�m
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potential). The potential has the following structure:
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; (3.3)

and

α =
1

2β6(1+ 6�7γ
γ7 )�β12(1+ 12�13γ

γ13 )
(3.4)

This form has the advantage over the standard shifted force potentials that both ε and r0 (the
well depth and the location of the minimum) retain their original meaning after the shifting
process. In our simulations we will take the common value rcut = 2:5σ where σ is implicitly
defined by r0 = 21=6σ. All properties will be presented in terms of ε, σ, and the mass m
(common Lennard-Jones units).

3.3 Simulation method

We performed molecular dynamics simulations at constant number of particles (N), constant
pressure (P), and constant temperature (T ). In order to simulate a true isothermal-isobaric
ensemble, we used Nosé-Hoover dynamics [87, 139] to integrate the equations of motion, in
which the thermostat and barostat variables are taking part in the dynamics of the system. We
did a careful study of pressure and temperature distributions in a bulk liquid and bulk solid in
order to tune the thermostat and barostat relaxation times so as to ensure that the distributions
had the correct width within reasonable simulation time and that the pressure and temperature
fluctuations did not interact. This resulted in τT = 0:0748 σ

p
m=ε and τP = 0:748 σ

p
m=ε,

with a timestep of ∆t = 0:000748 σ
p

m=ε.
In order to derive the correct temperature dependence of the bulk densities, we performed

NPT simulations on bulk systems of liquid (512 particles) and FCC solid (500 particles) at
various temperatures and pressure P = 0:0025 ε=σ3. Average volumes were calculated over
200,000 timesteps. The volumes per atom were least-squares fitted to a straight function in T
resulting in

v�l = 0:76111+0:77153�T�; 0:580 < T � < 0:630; (3.5)
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and

v�s = 0:85370+0:35466�T�; 0:580 < T � < 0:630: (3.6)

With the fitted volumes, new bulk simulations were performed at constant volume. The
solid and liquid boxes were made such that they had equal cross-sections in the x;y-plane.
The bulk NV T simulation were run for 100,000 timesteps of equilibration, whereafter co-
ordinate files were written every 1000 timesteps. To make two-phase boxes, one liquid and
one solid configuration were taken, both copied 4 times in the z-direction, and subsequently
put on top of each other. This way, two interfaces appear in the boxes, with their surfaces
along the x- and y-axes. The resulting boxes consisted of 2000 initially crystalline particles
( 5�5�20 unit cells ) and 2048 particles initially belonging to the liquid phase. To release
excessive potential energies due to particle overlap, 300 timesteps of NVT simulation were
done with rigid temperature scaling at every timestep. After this, NPT runs were carried out
to study growth and melting rates. The pressure scaling routine was adopted such that the
volume relaxation in x-, y-, and z-directions took place independently.

3.4 Results

In order to calculate growth and melting rates, we used an order parameter to distinguish the
crystal phase from the liquid phase. The order parameter, which was introduced in Chapter
2 [25], takes advantage of the octahedral symmetry of the nearest neighbours around a particle
in an FCC crystal. As can be seen in that chapter, a function Ψ could be derived which
discriminates very well between ‘solid-like’ and ‘liquid-like’ particles. The advantage of the
order parameter is that it is defined for each atom, so keeping track of the growth of one phase
comes down to merely counting the number of particles belonging to the crystal.

Results of growth and melting simulations are presented in Fig. 3.1. Each curve stands
for the average of 50 simulations at a given temperature. Because of the substantial tem-
perature fluctuations in the isothermal-isobaric ensemble, a spreading naturally arises in the
results from different runs at the same temperature. Therefore several runs with different
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Figure 3.2: Comparison of growth curves
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initial configurations (combinations of different configurations from the solid as well as from
the liquid runs) had to be carried out to obtain good statistical accuracy. As can be seen from
the figure, the overall behaviour is universal; after an equilibration period of less than 50 re-
duced time units, the number of crystalline particles increases or decreases linearly in time.
This means that the supersaturation was kept constant and the two interfaces were separated
far enough so as to not interact with one another.

Note that our system size is substantially larger (a factor 2.5) than the one used by
Broughton et al. [30]. Their claim that their interfaces did not interact was underpinned
by checking only static bulk properties and no dynamic properties. We found that with a
system of half the present size, the region before the constant linear regime really sets in is
almost twice as long, making it much harder to measure the growth rates accurately.

An alternative way of measuring growth rates is by monitoring the volume evolution of
the system in time. The number of crystal particles at time t can then by estimated by

Ns(t) =
Ntotal� vl �Vtotal(t)

vl � vs
(3.7)

The results of both methods for T = 0:580 ε=kB are similar, which is demonstrated in Fig.
3.2. This implies that the density front in the simulation is moving at the same speed as the
order front. This holds true for all temperatures we investigated.

From the linear part of the growth curves, growth rates were calculated and plotted versus
temperature in Fig. 3.3 (filled circles). As can be seen from the figure, this procedure led
to an apparent asymmetry of the growth and melting rates in the vicinity of the equilibrium
point. We checked that this asymmetry was independent of the vertical box size by perform-
ing simulations of boxes of half the size. Moreover, since volume measurements and order
parameter measurements gave the same results, we concluded that the asymmetry was not an
artefact of the measurement method.

There was one feature of the method which was inherently asymmetric and therefore
might be the cause of the asymmetry. That is, the crystals emerging from the growth sim-
ulations had incorporated certain imperfections which were not present in the bulk crystals.
When looking at Fig. 3.4, where only the disordered (‘liquid-like’) particles have been drawn,
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one sees that the crystal at the end of a growth simulation (denoted with NPT ) contains im-
perfections. An example of a starting configuration of a two-phase run (containing an equili-
brated solid in the middle) is shown in the first snapshot of Fig. 3.4, which indeed shows no
liquid-like particles in the crystalline phase. Unlike the discussion of imperfections by others
like Burke et al. [32] and Huitema et al. [89], almost all of these imperfections were neither
interstitial atoms, nor vacancies. Virtually all layers contained the maximum amount of par-
ticles, i.e., 50 (which was easily checked by integrating the longitudinal density profile layer
by layer), but on average one particle per layer was located away from its lattice site. Burke et
al. reported a substantial increase of the vacancy concentration upon decreasing temperature.
Unfortunately, they did not explain the way they measured the vacancy concentration. Again,
it should be noted that they investigated much larger undercoolings than we did. Huitema et
al. reported on undercoolings comparable to ours, but their results suffer from poor statistics
and they as well do not explain their way of quantification of the number of vacancies.

Since it is now clear that the crystals grown below equilibrium are structurally different
from the crystals with which we started our melting simulations, the asymmetry might be
explained by this difference. In order to check this we took the 50 end configurations of
growth runs at a certain temperature and started new simulations therewith at temperatures at
the same amount of superheating as the amount of undercooling at which they were produced.
In other words, the systems were put on the mirror side of the equilibrium temperature (which
was estimated from Fig. 3.3 to be 0:608 σ

p
m=ε). The result of one such experiment is

shown in Fig. 3.5. As a guide, the mirror image of the original growth curve is plotted
above the new melting curve. The slopes of both lines are in agreement. For comparison,
two melting curves starting with ideal crystals at temperatures just below and just above the
present temperature are also displayed. Clearly, the old method gives much smaller melting
rates. The experiment was repeated for four different temperatures and displayed as squares
in Fig. 3.3. The asymmetry of the interface reponse has now completely disappeared. This
phenomenon has been completely attributed to the subtlety of preparing initial configurations.
The much smaller melting rates from the totally ordered crystal might be the reason why
Burke et al. [32] failed to produce steady state melting. Instead their overheating was that
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NVT NPT

t = 0 t = 0.7 t = 36.5 t = 73.4 t = 1459.7 t = 299.2

Figure 3.4: Snapshots of different stages in an equilibrium run (NVT ) and of an end config-
uration of a nonequilibrium run (NPT ) at T = 0:587 ε=kB. Only the particles classified as
‘liquid-like’ are shown, providing a clear representation of the amount of mismatch in the
crystalline lattice.

large that they reached the mechanical melting point, i.e., the point at which the whole crystal
disintegrates at once.

It is important to note that not the constant pressure situation (which allows the crystal to
relax its volume), but either the presence of an interface or the rapid incorporation of defects
during growth causes the slightly disordered structure. In Chapter 2 [25], we showed that
the kinetic growth coefficient obtained from nonequilibrium simulations can also be obtained
from the fluctuations of the number of crystalline atoms in an equilibrium simulation. In the
light of the above, we investigated if the crystalline phase in such an equilibrium simulation
contains an equal number of imperfections as seen in the nonequilibrium simulation. Snap-
shots of different stages in an extensive equilibrium simulation are shown in Fig. 3.4. Indeed,
the number of imperfections is comparable. Note that the imperfections extend throughout
the whole crystal, and not just in the regions where the crystal has melted and regrown during
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Figure 3.5: Growth and melting curves show-
ing the difference between starting from con-
figurations with and without lattice imperfec-
tions in the crystalline phase.
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Figure 3.6: Laterally integrated density and
order profile in an equilibrium simulation.

fluctuations. This means that it is the proximity of the liquid phase that causes the slight
disorder in the crystal and not just the rapid incorporation of defects.

A more quantitative measure of the disorder is provided in Fig. 3.6. There we have
calculated the BT-profile, as introduced by Jesson and Madden [97], which is the laterally
integrated average number density of liquid material. Were the crystal totally ordered, the
value would have dropped to zero. For comparison, also the laterally averaged density profile
is shown. It can be seen that the densities in the liquid and in the solid agree perfectly with the
bulk values obtained from the bulk simulations. This shows again that it is not enough to just
look at static bulk properties in order to decide whether equilibrium is reached. In Chapter
5, we will undertake research to extract the kinetic growth coefficient from the equilibrium
simulation in the spirit of Chapter 2.

3.5 Conclusions

In this chapter, we have investigated the response of the FCC (100) crystal-liquid interface
to small superheatings and undercoolings with respect to the equilibrium melting temper-
ature. This led to an asymmetry of the response, which was explained in terms of lattice
imperfections in the crystalline phase. Such imperfections naturally evolved in the growing
crystal in contact with a liquid phase, but were absent in the equilibrated bulk crystal and
thus also in the melting simulations. When the melting simulations were started from config-
urations produced during growth of the two-phase systems (thus including imperfections in
the crystalline lattice), the asymmetry between growth and melting rates around equilibrium
completely disappeared.

Equilibrium simulations of a two-phase system were shown to produce lattice imperfec-
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tions equivalent to the ones emerging in growth simulations. This implies that equilibrium
simulations as advocated in Chapter 2 [25] may provide an alternative for calculating the
interface response near equilibrium in a more straightforward way.

39





4
Equilibration, relaxation, and
long-time dynamics of the
moving interface

In this chapter, we present nonequilibrium molecular dynamics simulations on
the growth and melting of the Lennard-Jones (100) interface at small undercool-
ings and superheatings. Production runs were carried out after extensive equili-
bration at the melting point. Two regimes of linear growth rate were discovered:
a short-time regime associated with interface relaxation and a long-time regime
associated with the macroscopic limit of growth and melting. It was shown that,
if system sizes or equilibration times are taken too small, one will find only the
initial regime. On the basis of our very accurate results on the macroscopic
growth rates close to equilibrium, the possibility of a discontinuity in the tem-
perature dependence of growth and melting rates at the melting point was ruled
out. �

4.1 Introduction

Understanding the microscopic processes associated with crystal growth from the melt is of
major importance in the prediction of the growth rates of various crystal planes, and, eventu-
ally, the growth morphology of the crystal as a whole. Except for very large deviations from
the melting temperature, where homogeneous nucleation may dominate the dynamics, the
process of melting and freezing of a crystal takes place at the interface. Since this interface,
being a combination of two dense phases, is not easily accessible to experiment, computer
simulations provide a good means to elucidate the microscopic restructuring processes in-
volved in crystallization and melting. In this study, we will use Molecular Dynamics (MD)
simulations to look at the growth and melting of the Lennard-Jones (100) interface at small
amounts of undercooling and superheating. In this regime, the interface is thermodynami-
cally rough and defect growth does not play a significant role.

One of the first accounts of the steady-state motion of a crystal-melt interface in MD
simulations has been the work of Broughton, Gilmer, and Jackson [28]. They combined a
solid and a liquid phase in one simulation box and calculated the steady-state velocity of

� The work described in this chapter has been accepted for publication in J. Chem. Phys. [170]
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the interface as a function of temperature. A theoretical prediction for this dependence is
supplied by the Jackson-Chalmers representation of the Wilson-Frenkel theory [92] (see also
Sec. 1.2), where the solid-liquid transition is assumed to take place through some intermediate
or transition state. The rates R are given by:

R(T ) =C1 exp

�
� Q

kBT

��
1� exp

�
(hl �hs)(T �Tm)

kBT �Tm

��
; (4.1)

where Q is the activation energy for diffusion in the liquid, and h is the enthalpy per particle of
the respective phase. Broughton et al. showed that for the Lennard-Jones FCC (100) surface,
the incorporation of atoms on the surface of the crystal is not an activated process. This led
them to replace the Arrhenius factor by a factor proportional to the thermal velocity of the
atoms:

R(T ) =C2T 1=2
�

1� exp

�
(hl �hs)(T �Tm)

kBT �Tm

��
; (4.2)

which was shown to reproduce their data over a wide range of temperatures (albeit all be-
low Tm). Both Eqs. 4.1 and 4.2 lead to the general observation that melting rates are larger
than crystallization rates, at equal amounts of supersaturation. This might be one of the rea-
sons that over the past decades a large number of simulation studies have appeared on the
freezing of crystals, but comparatively few on melting. For instance, in a successive paper
of the Broughton group [32], they tried to complement their growth studies with melting,
but they failed to produce steady state melting. Instead they quickly reached the mechanical
melting point, i.e., the point at which the whole crystal disintegrates at once. Note that the
undercoolings and superheatings they used are enormous compared to the ones we will look
at.

The asymmetry of freezing and melting kinetics was first shown experimentally for crys-
talline silicon (c-Si) growing from amorphous silicon (a-Si) by Tsao et al. [176]. Their results
were later reproduced with MD simulations by Kluge and Ray [111], using a Stillinger-Weber
potential, and by Iwamatsu and Horii [91] with classical Density Functional Theory (DFT).
Note that, although they all report an asymmetry between melting and freezing in these sys-
tems, there is no slope discontinuity of the growth rate vs. temperature curve upon crossing
the melting point. It was mentioned already in the 1920’s, in an Ansatz by Tammann [165],
that such a slope discontinuity can not occur. This was restated in the 1960’s by Uhlmann et
al. [180], who argued that an abrupt change in the kinetic coefficient (C2 in Eq. 4.2) on going
from freezing to melting would imply a violation of microscopic reversibility.

However, in their study of crystallization and melting of sodium, Tymczak and Ray [177,
178] found a clear slope discontinuity at the equilibrium temperature. Singularities at the
melting point were subsequently reported with dynamic DFT calculations [157], a kinetic
mean field theory [189], and lattice gas simulations [133]. The theory of Richards [145]
tried to explain the asymmetry on the basis of the density change upon freezing or melting,
but the major role of this density change was later contradicted by the work of Oxtoby and
Harrowell [140]. Up till now, the question is still under debate.

In Chapter 3 [169], we reported on nonequilibrium simulations for the FCC (100) in-
terface with the Clarke [39] potential. There, we investigated the influence of system size
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effects and carried out thorough thermodynamic averaging to arrive at very accurate statis-
tics. This initially led to a clear asymmetry of growth and melting rates close to equilibrium,
which was attributed to lattice imperfections in the growing crystals. It was shown that if the
melting simulations were started with the initially grown crystals, the asymmetry was made
to disappear, thus showing it to be an artefact of the simulations. A comparable asymmetry
was found in the growth and melting simulations of Huitema et al. [89], but since they were
mainly interested in crystallization rates, they did not discuss it.

In Chapter 2 [25], we presented a method to extract the temperature dependence of the
interface velocities from the fluctuations in an equilibrium simulation. Note that, for the
applicability of this efficient method, it is crucial that no slope discontinuity exists at the
equilibrium temperature.

In this chapter, we will carry out nonequilibrium simulations for a pure Lennard-Jones
substance and extend our previous findings. We will demonstrate the crucial importance of
good equilibration and we will report on the discovery of two time-regimes of growing and
melting rates. The initial regime is associated with interface relaxation, while the second
regime is associated with the macroscopic limit of growth. We will discuss the risk that when
equilibration is not carried out to full extent, or when too small system sizes are used, only
the initial regime will be observed, which can easily lead to erroneous conclusions about
the temperature dependence of growth and melting rates. The procedures described here
will be of general interest to the study of crystal-liquid interfaces in simple systems, both
dynamically and in equilibrium, which continues to be the topic of many theoretical and
simulation studies at present [82, 97, 122, 134].

This chapter is organized as follows. In the next section, we will describe our simulation
system. First we mention how we tuned our thermostat and barostat to carry out the nonequi-
librium simulations. Second, we describe the interparticle interactions and pay particular
attention to how long-range corrections to the pressure should be carried out in simulations
where two phases are present. In Sec. 4.3 we describe our equilibration method and show that
proper equilibration is crucial to extract the correct rates. The succeeding section deals with
the results of the nonequilibrium simulations and the discovery of the two regimes of linear
growth rate. Finally, in Sec. 4.5, the temperature dependence of the rates will be presented
and it will be shown that, for our system, a slope discontinuity does not exist at the melting
point.

4.2 Simulation details

4.2.1 Nosé-Hoover dynamics

In this study, we simulated two-phase crystal-melt systems at constant number of particles
(N), pressure (P), and temperature (T ). In order to accomplish this, we employed Nosé-
Hoover dynamics [87,139]. This scheme is known to have a well-defined conserved quantity
and to generate trajectories with the correct distribution of pressures and temperatures. Al-
though thermodynamic properties like pressure and temperature are only rigorously defined
as ensemble averages, we will use these terms also to refer to the instantaneous values of their
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microscopic estimators:

T̂ =
1

Nf kB

N

∑
i=1

jpij2
mi

(4.3)

and

P̂ = ρkBT̂ +
1

3V

N

∑
i=1

ri � fi; (4.4)

with Nf the number of degrees of freedom.
In the Nosé-Hoover scheme both pressure and temperature are constrained to produce the

desired distributions by coupling to a bath by means of parameters that rescale the volume and
the particles velocities, respectively. The algorithm has been shown to be quite robust with re-
spect to the speed at which momentum space and configuration space are rescaled [174,175].
However, since we are dealing with systems that are not in thermodynamic equilibrium in
this study, we do not only require that the scheme produces the correct distributions on aver-
age, but also within reasonable time. More specifically, in the case of a growth simulation,
for example, we do not wish the system to have crystallized by a substantial amount before
it has sampled a representative part of the temperature and pressure distributions. This addi-
tional requirement of fast thermostat and barostat equilibration makes the choice of both the
timestep and the bath relaxation times much more delicate than in simulations at thermody-
namic equilibrium.

In order to be on the safe side with respect to energy drifts (cf. Ref. [174], Table 2), we
used a timestep of 7:480� 10�4

p
mσ2=ε (reduced Lennard-Jones units) in all our simu-

lations. For tuning of the relaxation times, we studied the distributions of temperature and
pressure in both a bulk liquid and a bulk solid of Lennard-Jones particles with a cut-off radius
of 2.5 σ and long-range corrections to the pressure and the energy. The distributions were cal-
culated over short runs of 50,000 timesteps after equilibration. The temperature distributions
were measured at constant NVT , and the pressure distributions at constant NPT (bulk liquid)
or N ¯̄σT (bulk solid). Here constant pressure tensor ¯̄σ means that both the box volume and
shape were allowed to relax. Results are shown in Fig. 4.1. From this figure it can be seen
that when a relaxation time is given too small a value, the corresponding property remains
too close to the average value. Also, one can see that there is a steady ‘overshoot’, i.e., the
values basically bounce back and forth between two values just below and above the average.
From the time evolution (not shown here) it appeared that this process happens at one distinct
frequency. On the other side of the spectrum, if relaxation times are chosen too large, the
distribution does not have the correct width either, at least not within the 50,000 timesteps
displayed here. In the end, the system will sample the whole distribution, but it does so by
long-time fluctuations superimposed on the chaotic short-time oscillations (which again was
seen from the time evolutions).

We also investigated the temperature distribution in the constant pressure simulations.
They were nearly equal to the ones shown here (for NV T simulations), from which we con-
clude that for our choice of relaxation times, the thermostat and the barostat variables do
not interact. For all the simulations in this study, we chose as thermostat relaxation time
τT = 0:0748

p
mσ2=ε and as barostat relaxation time τP = 0:748

p
mσ2=ε.
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Figure 4.1: Left side: Normalized distributions (NVT ) of the temperature estimator in a
bulk liquid (512 atoms) and a bulk solid (500) atoms at T = 0:694 ε/kB. Measurements are
taken over 50,000 timesteps for τT = 0:00748

p
mσ2=ε (diamonds), τT = 0:0748

p
mσ2=ε

(triangles), and τT = 0:748
p

mσ2=ε (circles). The solid lines represent a Gaussian distribu-
tion with variance 2T 2=3(N� 1). Right side: Normalized distributions (NPT ) of the pres-
sure estimator in a bulk liquid (512 atoms) and a bulk solid (500) atoms at T = 0:694 ε/kB.
Measurements are taken over 50,000 timesteps for τP = 0:0748

p
mσ2=ε (diamonds), τP =

0:748
p

mσ2=ε (triangles), and τP = 7:48
p

mσ2=ε (circles). The solid lines represent fits to
Gaussian distributions (variances σliquid

P = 0:031 ε=σ3 and σsolid
P = 0:061 ε=σ3).
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4.2.2 The model system

In Chapter 3, we used the Clarke 12-6 potential [39] to model particle-particle interactions.
This potential has the advantage that it goes smoothly to zero at a predescribed cut-off dis-
tance. However, since much more data exist both numerically and theoretically on the simpler
Lennard-Jones potential, we chose the latter for the present study. All interparticle interac-
tions were modelled with the standard Lennard-Jones 12-6 potential with a cut-off radius
(rc) of 2.5 σ. Accordingly, all properties in this chapter will be presented in terms of the
well-depth ε, the radius σ and the mass m.

Because the potential is rigorously put to zero beyond the cut-off radius, the long-range
tail of the (infinite) potential is missed, which must be corrected for in the energy and the
pressure. Such corrections naturally depend on the density of the system. Since in constant
pressure simulations the density changes during the run, the corrections must be made at
run-time. This is usually done by assuming that the radial distribution function g(r) is ap-
proximately equal to 1 for r > rc and then analytically integrating the interaction potential or
the virial contribution (for energy and pressure, respectively) multiplied by the bulk density
squared. In a system with two phases of different densities, however, there is no well-defined
bulk density, which makes the procedure less straightforward. In the appendix of this chap-
ter, an expression is derived for the long-range correction to the pressure in a system with
two phases separated by a flat interface (see Eq. 4.A.4). The resulting values for different
fractions by volume α of crystalline material are given in Fig. 4.2. As can be seen from
the figure, there is surprisingly little difference between our improved expression and the
correction made with the overall density.

It has recently been pointed out by Baidakov et al. [8] that in simulations where an in-
terface is present, it can be extremely important to explicitly take into account enough of the
long-range interactions. For example in their simulations of the Lennard-Jones liquid-vapour
interface, they found extensive changes of thermodynamic properties, the surface tension and
the thickness of the interface layer upon going from a small (2.6 σ) to a large (6.78 σ) cut-off
radius. Thus, the asymmetry that was felt by particles due to the presence of the interface ex-
tended far into both phases. This would imply that a big difference is to be expected between
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using our new expressions and rough estimates of long-range corrections, especially since
our cut-off radius is not that large. No such differences were observed however. The reason
for this may be that liquid-vapour interfaces and crystal-liquid interfaces differ in the density
change upon crossing the interface. At least for monatomic systems, this change is quite
small for the crystal-liquid interface and comparatively large for the liquid-vapour interface.
(In our case ρs=ρl = 1:135).

There is another, more pragmatic, problem with our new expression. In order to use it
at runtime in a simulation, one has to be able, at every single timestep, to tell the amount of
solid and liquid material in the system. For this, we could use our solid-particle recognition
criterion (see Chapter 2) but that slightly overestimates the amount of liquid material since it
assigns most of the (diffuse) interface to the liquid phase. Another method, which connects
more closely to the derivation we used in the appendix, is to look at the total instantaneous
volume of the system. Since we know from our bulk simulations the volumes per particle
for each phase, we could at every instance calculate the proportion between solid and liquid
phases. This however, does not work either. Since instantaneous volume fluctuations will
also take place in the bulk parts of the two-phase system, our average particle volumes are
not a good measure. As a consequence, at certain instances, our prediction for α could
exceed 1 or drop below 0. As can be seen from Fig. 4.2, the new expression diverges close
to these values. Any other method that could be suggested to distribute the material over the
two phases would suffer from comparable inaccuracies. Since the associated errors are most
probably larger than the difference between the two expressions, we decided to keep using
the overall average density in calculating instantaneous corrections to the pressure and the
energy.

4.3 Equilibrating the two-phase system

In Chapter 3, we showed that proper preparation of the two-phase system plays a crucial
role in the resulting growth and melting rates. There, we combined fully equilibrated bulk
phases of liquid and solid in one simulation box. To release excessive potential energies due
to particle overlap, 300 timesteps of NVT simulations were performed with rigid temperature
scaling at every timestep. Thereafter, NPT runs were carried out at the appropriate temper-
atures and P = 2:512� 10�3 to study growth and melting. We found that the crystals that
were grown in the NPT simulations contained just a little more ‘imperfections’ (as defined by
our solid-liquid discriminator, see Chapter 2) than the crystals that were melted directly after
equilibration. This resulted in a clear asymmetry of growth and melting. It was also shown
that imperfections eventually appeared in the crystalline phase when the system was run for
a long time at the equilibrium temperature, which means that the crystals with imperfections
really represent the thermodynamically favoured state. It was argued that the crystals lacking
imperfections melt more slowly than realistic crystals would do. Indeed, when the crystals
grown in the crystallization runs were used for the melting runs, the asymmetry was shown
to disappear. Thus, an extensive and careful equilibration of the system at the melting point
will most probably also give a symmetric behaviour of growth and melting.

In the present study, we chose to perform such a careful equilibration. Like before, we
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carried out bulk simulations of liquid and solid phases at the appropriate densities, but this
time only at the melting temperature. The densities were found by doing several NPT runs
of the bulk phases at different temperatures and fitting the average volumes as a function of
temperature. For the average volumes per particle this led to (in Lennard-Jones units):

vl = 1:0312�0:15802�T +0:53748�T 2 (4.5)

and

vs = 1:0513�0:34068�T +0:46830�T 2; (4.6)

for 0:640< T < 0:747.
First, we needed an estimate of the equilibrium temperature Tm. For this we used the most

accurate collection of thermodynamic data for the Lennard-Jones system at this moment, the
Johnson data for the liquid [100] and the van der Hoef data for the solid [85]. From these data
we calculated the chemical potentials at the desired pressure and sought for the temperature
at which the chemical potentials of the solid and the liquid are equal. This gave an estimate of
Tm = 0:687. At this temperature, we performed a two-phase NVT simulation and measured
the pressure. Next we slightly changed the temperature until the pressure reached the desired
value. From this we found Tm = 0:69659 and thus, with the above fits, veq

l = 1:1819 and veq
s =

1:0412. At this temperature and pressure, the equations of Johnson and van der Hoef give
vl = 1:1838 and vs = 1:0446, in quite good agreement with our calculations. The agreement
of both the melting point and the associated densities is almost perfect, given the fact that
for simple systems, the curves of free energies of the two phases vs. temperature have very
similar slope. Thus a small error in the free energy of one phase with respect to the other
leads to a large error in the predicted transition point.

With the densities found above, we performed NVT simulations of the bulk phases at the
equilibrium temperature. Here the liquid boxes were elongated along the z-direction and were
given the same cross-sectional areas in the x;y-plane as the solid boxes. The bulk simulations
were first run for 100,000 timesteps of equilibration, whereafter co-ordinate files were written
once every 1000 timesteps for 50,000 more timesteps in total. To make two-phase boxes, one
liquid configuration and one solid configuration were taken, both copied four times in the
z-direction, and subsequently put on top of each other. The resulting systems contained two
solid-liquid interfaces and consisted of 2000 initially crystalline particles (5� 5� 20 unit
cells) and 2048 particles initially belonging to the liquid phase.

This is the point were the new procedure starts to deviate from the one in the previous
chapter. We used to continue with 300 timesteps of strict temperature scaling to release the
particle-particle overlap caused by the combination of the two phases. Upon closer exam-
ination, however, it appeared that this had the side effect of removing any ‘imperfections’
that were present in the bulk crystal phase. So the imperfections, which belong to a well-
equilibrated crystal, disappeared just because of those (very short!) simulations with strict
temperature scaling. Therefore we decided to keep the solid phase atoms frozen at their po-
sitions and applied 750 timesteps of strict temperature scaling to the liquid only. This proved
to be enough to get rid of most of the overlap energies. Thereafter the liquid was equilibrated
for 100,000 timesteps, while still constraining the crystal to its original configuration. This
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Figure 4.3: Increase and decrease of the
number of solid-like particles during the
equilibration process. Shown are the results
for three different box sizes: 4048 particles
(thin solid line), 8096 particles (thick solid
line), and 16192 particles (dotted line). The
dashed line denotes the point after which the
crystal is allowed to relax. 0 100 200 300

t [(mσ2
/ε)

1/2
]

−100

−50

0

50

100

N
 [−

]

way, the liquid was equilibrated against a crystal with the correct amount of imperfections,
but with a temperature of essentially zero Kelvin. Therefore, the equilibration should not be
extended too long, in order to avoid excessive ‘freezing’ of the liquid on the crystalline sur-
face. After the liquid equilibration, the solid was finally relaxed as well and the whole system
was run another 300,000 timesteps of equilibration. During the whole procedure, we counted
the number of solid-like particles using our recognition function. This was done for 50 runs
of different starting configurations and subsequently averaged at each time. We found that
this number of 50 runs gave a good trade-off between accuracy and computational cost. We
will also discuss this in the next section (Fig. 4.5).

Results for the averaged equilibration curves are shown in Fig. 4.3. Apart from the results
of the 4048 particle system, curves are also shown for systems of double and quadruple size.
In order to monitor processes at the interface, all three curves were shifted downwards by the
number of solid particles that corresponds to the sizes of the bulk systems that were combined.
In the bulk crystal simulations, on average 94.18 % of the particles were classified as solid
particles by our discriminator. In the bulk liquid simulations, this was 0.05859 %. Accord-
ingly the curve of the small box was shifted down by 0:9418�2000+0:0005859�2048=
1885 particles. The other curves were shifted by 3770 and 7539 particles, respectively.

All curves start below zero, as a result of the 750 timesteps with strict temperature scal-
ing (not included in the figure) and the fact that particles that ‘see’ a crystal on one side and
a liquid on the other, will no longer be classified as solid-like. (If it had been only for the
latter effect, one would have expected a value of -100, corresponding to 2 interfaces of 50
atoms.) During the equilibration of the liquid against the constrained solid, the amount of
crystalline material increases. This happens because a crystal-like interface is built up in the
contact region between both phases. After the release of the solid phase, the amount of crys-
talline material drops again, because of relaxation in the crystalline part of the interface. For
the smallest box, equilibrium is only reached after approximately 300,000 timesteps (corre-
sponding to a simulation time of 224:4

p
mσ2=ε), which is extremely much larger than most

other studies so far have assumed to be sufficient. The two larger boxes need less time to
reach equilibrium. Note also that the double and quadruple box seem to converge to approx-
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Figure 4.4: Melting curves at T = 0:714ε=kB

started from three different stages in the
equilibration process.

imately the same value of N. We will come back to these observations later when we discuss
the system size effects on our production runs.

4.4 Nonequilibrium simulations

To carry out production runs of crystallization and melting, the well-equilibrated two-phase
systems were quenched to the desired temperatures, by reassigning velocities from a Gaus-
sian distribution with the appropriate mean and width. Then simulations were carried out in
the NPT ensemble, with a Nosé-Hoover thermostat and barostat, applying the same param-
eters as in the bulk simulations (Sec. 4.2.1). The barostat was adopted such that the volume
relaxation in the x-, y-, and z-directions took place independently. The production runs were
again carried out over 50 independent starting configurations (the end configurations of the
equilibration runs) at each temperature. During the runs, the number of crystalline particles
was calculated once every 100 timesteps. Results of the 50 runs were subsequently averaged.

One example of an averaged melting run is shown in Fig. 4.4. To investigate the influence
of equilibration time, we started melting runs from three different stages in the equilibration
(100, 200, and 300 thousand timesteps after the release of the crystal phase). All three cases
show an initial rapid drop of the number of crystalline particles. This reflects the relaxation
of the system to the new temperature. Simultaneously, the volume of the box increased by a
corresponding amount. After this short period, the (averaged) temperature and pressure had
relaxed to their desired values.

Shortly after the initial box relaxation, the system started to melt with a constant velocity
in both three cases. The experiment with the shortest equilibration time melted somewhat
slower than the two others. A remarkable feature, however, of all three cases, is that they
displayed a second regime, where the melting was again linear in time but took place at a
smaller rate than initially. This crossover from an initial to a second regime was clearly
noticeable for most of the temperatures at which we performed our measurements, though
less pronouced for the crystallization runs than for the melting runs and less pronounced for
temperatures very close to equilibrium. Note, however, that the effect is also quite subtle:
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Figure 4.5: Melting curves at T = 0:714ε=kB

showing a selection (5 runs) from different
starting configurations, as well as the aver-
age over 50 runs (thick line). 0 100 200 300
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in order for the effect to be seen, it is necessary to carry out averaging over many different
runs. This is shown in Fig. 4.5, where a selection of single runs is drawn together with the
curve averaged over all 50 boxes. On the temperature range that we study, the fluctuations of
Ns in one single run are of the same order as the differences between the averaged curves of
different temperatures.

The discovery of two distict regimes of growth and melting raises two questions: ‘Is this
an artefact of the simulation method (e.g. an effect of system size), or is it a real, physical
effect?’ and ‘If it is not an artefact, which one of the two regimes corresponds to the rates that
are to be associated with macroscopic crystal growth such as would be seen in experiments?’

In order to study system size effects, we repeated our simulations for systems of twice
and four times the originial sizes. We could have constructed the new two-phase boxes by
taking 8 or 16 periodic images of the bulk phases (instead of 4 for our smaller system).
However, we chose to do the bulk (NVT ) simulations anew at the actual sizes that we needed
in the two-phase simulations. In this way, we made sure that we combined two completely
randomized phases and did not introduce any undesired periodicity. In Chapter 8 where
we study density fluctuations of adsorbed species in nanopores, we will see that in order
to sample long-wavelength fluctuations of the order of the box size, one has to completely
randomize initial positions of the particles over the whole pore. There it will prove not to be
sufficient, say, to divide the pores in four sections of equal length and distribute a fourth of
the particles randomly over each of the sections (see Sec. 8.4). To summarize, the two-phase
systems of 8096 particles were constructed from bulk liquids of 4096 particles and bulk solids
of 4000 particles, and the two-phase systems of 16192 particles were constructed from bulk
phases of 8192 and 8000 liquid and solid particles, respectively.

The resulting averaged curves for the same temperature as in Fig. 4.5 are shown in Fig.
4.6. The most striking feature of this graph is that all three curves seem to start with the same
initial slope and to end with approximately equal slopes as well. Only the time over which
the initial regime extends seems to shorten substantially with increasing box size. We suggest
that both regimes belong to a physical process, which is reflected by the fact that neither slope
does change significantly upon enlarging the box size. Since the second regime seems to be
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Figure 4.6: Averaged melting curves at T =
0:714 ε=kB for different box sizes with a to-
tal number of particles of 4048 (50 runs, thin
solid line), 8096 (50 runs, thick solid line),
and 16192 (32 runs, dotted line), respectively.

Figure 4.7: Comparison of melting curves for
the small and intermediate box sizes, where
either both phases are doubled or the whole
system is copied twice.

persistent and becomes increasingly dominant when the system is enlarged, we infer that
this regime is to be associated with the macroscopic limit of crystal growth (or melting). As
can be seen from the figure, the slope of the second regime still changed somewhat upon
enlarging the size, but for computational reasons we decided the results of the intermediate
boxes were converged satisfactorily (this was a generic trend for all temperatures).

The initial regime may be a relaxation of the interface reflecting a change from the equi-
librium shape at the melting point to a steady-state shape belonging to the actual temperature
of the experiment. This is in accordance with kinetic mean field results of Williams, Moss,
and Harrowell [189].

One might argue that if local density fluctuations are crucial and only the total number
of particles in the simulation plays a role in the size of these fluctuations, the effect should
also be seen in a system that is built as two copies of the original box (thus containing four
interfaces per simulation cell). This we checked by comparing the results from the small box
with those from the intermediate box and those from a system that was made by copying the
small box twice in the z-direction. The results are shown in Fig. 4.7. One can see that the
larger fluctuations in the ‘doubled small’ box give ease to a better buildup of the equilibrium
interface (reflected in the starting point of the melt run which is close to that of the large
box). In the nonequilibrium situation, however, the long-time behaviour is close to that of
the small box. Thus it is really the bulky behaviour of the large phases in the larger box that
makes the interface relax to its nonequilibrium shape. Note again that our ‘small’ system
is of comparable size or larger than the maximum system sizes of most other studies. This
means that those studies probably have been investigating interface relaxation rates rather
than macroscopic crystal growth rates.
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Figure 4.8: Dependence upon the supersat-
uration (deviation of the temperature from
equilibrium) of the initial (pyramids) and
long-time (circles) growth and melting rates.
Shown are the results for the small (open
symbols) and intermediate (closed symbols)
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A second concern that might be raised is that immediately after the initial quench, the
crystal starts to grow (or melt) thereby releasing (consuming) latent heat of fusion. If the
thermostat would not be able to remove all of the extra heat, the interface may heat up (cool
down) until balance is reached between heat production and heat transport. This effect would
slow down both growth and melting rates, since the final temperature at the interface would
then be closer to the melting point than the overall temperature. In order to investigate this,
we did a thorough study of temperature profiles by monitoring local averages of the kinetic
energy, both averaged over the whole run and followed as time evolution. In neither case did
we find any noticeable deviation of the interface temperature from the overall temperature.
From this we conclude that our thermostat relaxation time was chosen small enough so as to
effectively produce constant temperature experiments.

4.5 Temperature dependence of growth and melting
rates

We carried out simulations with the small and intermediate boxes at several different tem-
peratures below and above the equilibrium temperature. For all experiments, averages were
calculated over 50 different initial configurations. The small box systems were equilibrated
over 100,000 timesteps with frozen crystal configurations and 300,000 timesteps with the
whole system relaxed, while the intermediate box systems were equilibrated over 100,000
steps with a frozen crystal and 200,000 steps with both phases relaxed. For the small sys-
tems, the initial slopes were calculated easily, but the second regime was only accurately
measured in one growth and four melting experiments. The reason for this was that close to
equilibrium, the second regime was not found, and far from equilibrium, there was only a
very short time of second regime (if any) before the system had grown one of the two phases
so far that the two interfaces in the box started to interact. Most of the intermediate size
experiments showed both regimes over a substantial time. The results are shown in Fig. 4.8.
It can be seen that over the whole range of temperatures studied, the agreement between both
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system sizes is good. The long-time regime rates are perfectly linear with respect to temper-
ature. We think that this is clear evidence of the Ansatz of Tammann [165] and supplies an
extra confirmation of the fact that the long-time regime is indeed to be associated with the
macroscopic limit of growth and melting.

The initial rates are not linear in temperature. This implies that improper equilibration
might be one of the reasons why earlier researchers (including ourselves) have found non-
linearities or slope-discontinuities around equilibrium in the dependence of growth rates upon
under- and supersaturation, even for roughly growing surfaces.

Finally, we investigated the dependence of the crossover time between the two regimes
upon temperature. We started to make a linear fit through the second-regime growth rates
(denoted by R2). This resulted in:

Rfit
2 (T ) = 99:052�142:07 T (4.7)

Note that this leads to a definitive estimate of the equilibrium temperature for our system of
Tm = 0:6972ε=kB, in very close agreement with our earlier estimate. Next we fitted the initial-
regime growth rates with a third-order polynomial in ∆T (the deviation of the temperature
from equilibrium). This resulted in

Rfit
1 (T ) =�184:19 ∆T �739:39 ∆T 2�38291 ∆T 3 (4.8)

The accuracies of these fits can be appreciated from Fig. 4.8.
Now, for each experiment, we did not only measure the slopes of the growth curves, but

also the intercepts with the N-axis. We fitted the intercepts (denoted A) of the initial regimes
with a third-order polynomial in ∆T :

Afit
1 =�10:2�3850:4 ∆T �17694 ∆T 2 +1:2236�105 ∆T 3 (4.9)

Next we fitted the intercepts of the second regimes, while constraining the zeroth order term
to the value of the initial intercepts. This means forcing both curves to coincide at equilibrium
(∆T = 0).

Afit
2 =�10:2�6443:4 ∆T �39576 ∆T 2�1:8772�105 ∆T 3 (4.10)

The results are shown in Fig. 4.9. The difference between Afit
1 and Afit

2 can be interpreted
as a measure for the difference between the widths of the nonequilibrium interface and the
equilibrium interface. The points at which both fits Afit

i +Rfit
i � t intersect are our estimates

for the crossover times:

tcross =
2593:0+21882 ∆T +3:1008�105 ∆T 2

42:12+739:39 ∆T +38291 ∆T 2 (4.11)

In Fig. 4.10, we have drawn all growth and melting curves for the intermediate box size,
including the fits to the linear regimes as well as Eq. 4.11. As can be clearly seen, the
crossover time grows large upon approaching equilibrium, while at the same time the initial
and the second-regime rates grow more and more equal.
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Figure 4.9: Temperature dependence of inter-
cepts A1 (diamonds) and A2 (circles) of the
growth and melting curves. The dashed lines
represent the fits of Eqs. 4.9 and 4.10.
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Figure 4.10: Growth and melting curves
for all temperature at intermediate box size,
showing both the measurement data and the
fits to the initial and final slopes. The dashed
line shows the calculated crossover times be-
tween both regimes.

4.6 Conclusions

We presented the most accurate simulations to date of crystal growth and melting rates of
the Lennard-Jones (100) face at temperatures close to equilibrium. We proposed a way to
carefully equilibrate two-phase systems to carry out subsequent nonequilibrium simulations
and showed that our solid-liquid recognition function supplies a powerful tool to monitor the
equilibration process.

We discovered two linear regimes. The initial regime was associated with interface re-
laxation and was shown to be most dominant for small system sizes and close to equilibrium.
The second regime was associated with the macroscopic limit of growth and melting. The
linear dependence of the macroscopic rates upon temperature provides clear evidence of the
early observation of Tammann that roughly growing surfaces with one type of interaction
sites can not have a slope discontinuity in the rate-temperature curve. This contrasts some
earlier simulation studies. We showed that improper equilibration of the two-phase systems
can result in the observation of only the initial (interface relaxation) regimes. Since these
were shown not to vary linearly with temperature, some (or all) of the earlier observations of
a slope discontinuity may be explained by this.

Now that the necessary hardware requirements have come into reach, it has become pos-
sible to study the effect of system size and simulation times upon dynamic measurements of
two-phase systems. The results in this chapter prove that both of these have to be (much)
larger than generally accepted in order to arrive at the correct rates. This reflects the fact that
the interface present in two-phase systems has an effective interaction range that is appar-
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ently much larger than any measure of the interface width would suggest. We think this study
provides a good guideline to what dimensions should be used in such systems and may be a
suitable starting point to study crystal-melt systems of more complex molecules, where the
molecular correlation lengths are already much larger.

4.A Appendix. Long-range corrections to the pres-
sure in a two-phase Lennard-Jones system

In this appendix, we derive an expression for the long-range correction to the pressure in a
system where two phases are present. We restrict ourselves to the case of a pure substance (the
interactions between all particles are identical), the only difference between the two phases
being their respective densities. We write the pressure as�1=6V times a double integral over
space of the densities at two positions r1 and r2 multiplied by the virial function w, whose
value depends on the distance r between r1 and r2. In the case of simple Lennard-Jones
particles, this function reads

w(r) = r
dφLJ

dr
=� 48

r12 +
24
r6 : (4.A.1)

In the integral, position r1 probes all material in the simulation box, so this co-ordinate is
restricted to the box volumeV , while the second co-ordinate represents all of the surroundings
of the first one and thus, in principle, extends over infinite space:

P =� 1
6V

Z

V

dr1

Z

∞

dr2ρ(r1)ρ(r2)w(jr2� r1j) : (4.A.2)

Note that in the calculation of the ‘uncorrected’ pressure, the integral reduces to a double
sum over nearest images, since all interactions beyond the cut-off radius are zero and box
dimensions should be such that non-nearest images are more than rc apart.

For the construction of the long-range correction, we apply the usual assumption [5] that
beyond the cut-off radius, the central particle only ‘sees’ average surroundings (which for a
pure substance comes down to assuming g(r) = 1 for r > rc). Because of this assumption, we
may substitute the average densities of the respective phases for ρ(r), where the choice for
either ρl or ρs depends on the region of the corresponding integral. Since there are two dif-
ferent phases, that can appear in four combinations, the long-range correction to the pressure
can be split into four distinct integrals:

Plrc =

� 1
6V LxLyρl

αLzR
0

dz1

� +∞Z

�∞

dx2

+∞Z

�∞

dy2

+∞Z

0

dz2ρlw(jr2� r1j)Θ(jr2� r1j� rc)

+

+∞Z

�∞

dx2

+∞Z

�∞

dy2

0Z

�∞

dz2ρsw(jr2� r1j)Θ(jr2� r1j� rc)

�
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Figure 4.11: Sketch of the integration space
as meant in Eq. 4.A.3. Position 1 traverses
the whole simulation box while position 2
traverses infinite space. The drawn sphere
denotes the volume within a radius rc of po-
sition 1, which is excluded from the integral
by means of the unit step function Θ.
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; (4.A.3)

where the unit step function Θ is used to denote that only the region outside the cut-off range
is taken into account. The integration space covered by the above expression is schematically
drawn in Fig. 4.11.

If we take the further (legitimate) assumption that rc is smaller than the length of either
of the two phases along the z-direction, the above expression can be elaborated upon to give

Plrc =

�πρ2
s

��
16
3
(1�α)�2β+
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3(1�α)2

�
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�
; (4.A.4)

where we have used the following substitutions:

α = Vl=V = 1�Vs=V

β = rc=Lz: (4.A.5)

The expression that has been found should be checked to give known results in limiting
cases. The most obvious one is to take the densities of the two phases equal (ρl = ρs). This
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leads to

Plrc =�πρ2
�

16
3

1
r3

c
� 32

9
1
r9

c

�
; (4.A.6)

which is equal to the well-known expression for the long-range correction to the pressure in
a pure Lennard-Jones substance [5].

Another limit that could be looked at is the limit of infinite system size (Lz !∞, and thus
β! 0). In that limit the influence of the interface should become unimportant. The resulting
expression is

Plrc =��απρ2
l +(1�α)πρ2

s

��16
3

1
r3

c
� 32

9
1
r9

c

�
; (4.A.7)

which can be seen as the analogue of Eq. 4.A.6, but in this case a squarely weighted average
of the densities shows up. This is because the density appears as a square in the pressure
expression.

It is instructive to see what would happen if one would just use the standard long-range
corrections. This comes down to neglecting the situation of two different phases and just
taking the number average density of the system as a whole:

ρ̄ =
Nl +Ns

V
= ρl

Vl

V
+ρs

Vs

V
= αρl +(1�α)ρs: (4.A.8)

This leads to

Plrc =�π [αρl +(1�α)ρs]
2
�

16
3

1
r3

c
� 32

9
1
r9

c

�
: (4.A.9)

Note the subtle difference with expression 4.A.7.
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5
Crystal growth and interface
relaxation rates from
equilibrium fluctuations

In this chapter, the kinetic coefficient of crystallization is calculated according
to the previously introduced equilibrium method [Chapter 2]. The existence of
two regimes of interface relaxation and macroscopic growth, such as they were
found in Chapter 4, is fully confirmed by the results of the equilibrium method.
Special attention is given to the relation between pressure fluctuations and fluc-
tuations of the amount of crystalline material. Furthermore, we investigate the
density and order parameter profiles of the interface and make a clear distinc-
tion between the instantaneous structure and the time-averaged profile which is
usually presented.�

5.1 Introduction

Over the past few decades, molecular dynamics (MD) simulations have proved to be an ex-
tremely powerful tool in the study of crystal growth and melting processes [95, 118, 121].
Given the experimental difficulty in probing the interface between two dense phases, the
atomistic details coming from MD methods have provided an excellent alternative in under-
standing the processes taking place at the interface.

Much information has been obtained on the structure (e.g., diffuseness, anisotropy) of
various crystal-melt interfaces [46,82,89,97], but on the dynamics of crystal growth from the
melt there are still some open questions, even for the simplest model systems. As an example,
concerning the growth and melting rates of atomic systems, there has been much debate
on whether a slope discontinuity in the rates exists upon crossing the melting point. Such
a singularity was claimed by Tymczak and Ray [177, 178] in their study of crystallization
and melting kinetics in sodium, in clear contradiction with earlier theoretical considerations
[165, 180]. In Chapter 4 we did a very accurate investigation of growth and melting rates of
the Lennard-Jones FCC (100) surface close to equilibrium. From this we were able to rule
out the possibility of a singularity at the melting point and argued that any such findings for
similar systems must be due to an artefact of the simulation.

� The work described in this chapter has been submitted to J. Chem. Phys. [171]
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One of the main problems to get accurate dynamics data out of simulations of two-phase
systems is that it is extremely difficult to ensure a properly prepared nonequilibrium inter-
face. The crystalline surface induces order which extends far into the liquid, and dynamic
correlation lengths are probably even much longer. In Chapter 3, for instance, we found a
clear slope discontinuity between crystallization and melting rates. This was shown to dis-
appear with the incorporation of lattice imperfections in the crystal that were only obtained
after proper equilibration.

In Chapter 4 we found that when nonequilibrium growth simulations were started af-
ter extensive equilibration of the system at the melting point, considerable time was needed
for the interface to relax to its nonequilibrium shape (i.e., the shape that corresponds to the
circumstances of the experiment). We discovered two regimes of linear growth: a short-time
regime associated with interface relaxation and a long-time regime associated with the macro-
scopic limit of growth and melting. We studied the influence of size effects and found that
the second regime could only be measured accurately for sufficiently large systems (larger
than mostly used in earlier simulations). In a system of 8:044σ� 8:044σ� 69:595σ (4048
atoms), the initial regime lasts much longer than in a system of 8:044σ�8:044σ�139:19σ
(8096 atoms), which makes an accurate calculation of the long-time dynamics in the smaller
system quite cumbersome. To sum up, in simulations where two phases are combined, it is
of utmost importance to take large enough system sizes, equilibration times and run times,
meaning generally much larger than in simulations of bulk systems.

In Chapter 2 we introduced a method to extract the kinetic coefficient (i.e., the slope of
the rates R vs. temperature T ) from fluctuations of the number of solid particles in one simu-
lation at equilibrium. Apart from avoiding the computational cost of having to do numerous
nonequilibrium simulations at a range of temperatures, this method has the advantage that the
simulations can be carried out principally ad infinitum, providing as accurate statistics as one
wishes. Unless special measures are taken against it, nonequilibrium simulations are limited
to the time during which the whole box becomes crystalline or liquid. Given the enormous
growth rates for atomic systems, this time can become unmanageably short even for moderate
supersaturations.

It is the main goal of the present paper to investigate whether the equilibrium method
gives accurate results for the system sizes of our previous nonequilibrium study (i.e., 4048
and 8096 atoms, respectively). In particular, we would like to find further evidence for the
presence of two growth regimes. A second objective is to find a method to calculate the
kinetic coefficient of normal growth exclusively using data from one and the same two-phase
equilibrium simulation, where in our previous approach we needed external input to calculate
this coefficient.

The paper is organized as follows. First we will briefly describe the model system and
the way we carried out the equilibration. Then we will study the relation between number
fluctuations and pressure fluctuations. We will suggest the substitution of a factor from the
original derivation (containing equilibrium thermodynamic properties of the bulk phases)
by a correlation factor which can be measured directly in the two-phase system. We will
elaborate on this by considering the influence of fluctuations of the pressure that are not
directly related to fluctuations of the amount of crystalline material. In the subsequent section,
we will compare the prediction of the kinetic coefficient from the equilibrium method with
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the nonequilibrium data from the previous study and discuss the influence of system size on
the accuracy. After this, we will describe in detail the structure of the interface and make
a clear distinction between instantaneous interface profiles and the overall, time-averaged,
profile which is usually presented. We close with discussion and suggest several routes for
future investigations.

5.2 Simulations

In this study, we performed extensive simulations of the two-phase atomic crystal-melt sys-
tem at equilibrium. In all cases, the direction of growth was perpendicular to the FCC (100)
surface. Interatomic interactions were modelled by the Lennard-Jones potential, so that all
properties will be presented in Lennard-Jones units (i.e., ε for unit energy, σ for unit length,
and (mσ2=ε)1=2 for unit time). In Chapter 4 the equilibrium temperature for this system was
estimated to be T eq = 0:6972 ε/kB at a pressure of P = 2:512� 10�3 ε=σ3. This is also
the state point for our present simulations, which were all carried out at constant number of
particles (N), constant volume (V ), and constant temperature (T ).

The simulations were performed with the DL POLY package [162], applying Nosé-Hoover
dynamics to keep the average temperature at the desired value. We employed a timestep of
7:480� 10�4

p
mσ2=ε and a thermostat relaxation time of τT = 0:0748

p
mσ2=ε. (See

Chapter 4 for an extensive discussion of the tuning of these parameters.) Two box sizes were
studied: a total of 4048 particles and a total of 8096 particles. In correspondence with our
previous study, these sizes will be referred to as the ‘small’ and the ‘intermediate’ box size,
respectively.

To properly equilibrate the two-phase systems, we started with NVT simulations of bulk
liquid (2048 and 4096 particles, respectively) and bulk crystal (2000 and 4000 particles, re-
spectively). Both the liquid and the crystal boxes were constructed with equal cross-sectional
areas in the x- and y-directions (5� 5 unit cell lengths) and with elongated axes in the z-
direction to give the desired equilibrium volumes (at this state point, vl = 1:1823 σ3 and
vs = 1:0414 σ3). After 100,000 timesteps of bulk simulations, we wrote configuration files
once every 1000 timesteps. From those configuration files, one liquid and one crystal box
were put on top of each other (in the z-direction) to create two-phase simulation boxes. For
both system sizes we thus created four different samples.

In order to release excessive potential energies due to particle overlap in our two-phase
system, we performed 300 timesteps of NVT simulations with rigid temperature scaling at
every step. Thereafter, 200,000 timesteps of Nosé-Hoover dynamics were carried out before
production runs were started. Production runs from which the data in this study were gathered
lasted for 20,000,000 timesteps for the small box and 10,000,000 for the intermediate box.
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5.3 Correlation between pressure fluctuations ∆P and
number fluctuations ∆Ns

In this section, we will briefly review the derivation of Eq. 2.10 and investigate if the fac-
tor that contains bulk equilibrium parameters can be replaced by a factor that can readily be
obtained from the two-phase simulation. Special attention will be given to the correlation be-
tween pressure and number fluctuations and to the difference in decay of the autocorrelation
of both of them.

In Chapter 2 we introduced an order parameter Ψ to assign particles either to the solid or
to the liquid phase. Thus we could, at every instant, calculate the deviations ∆Ns = Ns�Neq

s

of the number of ‘solid-like’ particles from their equilibrium value N eq
s . We measured the

decay of fluctuations of Ns

h∆Ns(t)∆Ns(0)i= h∆Ns(0)∆Ns(0)iexpf�t=τg ; (5.1)

which we could relate to the kinetic coefficient k that represents the temperature dependence
of growth and melting rates close to equilibrium:

R(T ) = k
µl �µs

kBT
��k

heq
l �heq

s

kBT
∆T
T eq : (5.2)

(Note that in the present chapter we present growth rates in terms of numbers of particles per
unit time, instead of distance per unit time as in Chapter 2. Therefore the factor A=a in Eq.
2.10 and d in Eq. 2.12 will be dropped.)

The basic assumption we make is that number fluctuations ∆Ns induce a volume and
consequent pressure change of the crystal and the liquid phase which is instantaneous and
homogeneous throughout both phases. In other words, we propose that mechanical equilib-
rium be reached on a much shorter timescale than the timescale of the crystallization process.
The pressure change results in a chemical potential difference between both phases, which
acts as the driving force back to equilibrium:

d∆Ns

dt
=

k
kBT

(µl �µs)

=
k

kBT

��
∂µl

∂P

�eq

T
∆P�

�
∂µs

∂P

�eq

T
∆P

�

=
k(veq

l � veq
s )

kBT
∆P; (5.3)

where in the second line we have used the equilibrium condition µeq
l = µeq

s .
Now we need a relation between ∆P and ∆Ns, which is provided by the condition of

constant total volume:

V = (Neq
l �∆Ns)(v

eq
l +∆vl)+(Neq

s +∆Ns)(v
eq
s +∆vs)

= (Neq
l �∆Ns)(v

eq
l � veq

l κl
T ∆P)+(Neq

s +∆Ns)(v
eq
s � veq

s κs
T ∆P)

� Neq
l veq

l �Neq
l veq

l κl
T ∆P�∆Nsv

eq
l +Neq

s veq
s �Neq

s veq
s κs

T ∆P+∆Nsv
eq
s : (5.4)
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Note that the first line is equivalent to using the classical definition of a Gibbs dividing surface
(see also Ref. [89]). In the first step we have assumed that both phases respond to the pressure
change in the same way as bulk phases. The approximation in the second step is to neglect
second-order terms. Now with V = Neq

l veq
l +Neq

s veq
s we find

∆P =�c∆Ns =� veq
l � veq

s

Neq
l veq

l κl
T +Neq

s veq
s κs

T

∆Ns: (5.5)

This completes the macroscopic law for the decay of number fluctuations

d∆Ns

dt
=� k

kBT

(veq
l � veq

s )2

Neq
l veq

l κl
T +Neq

s veq
s κs

T

∆Ns: (5.6)

Taking the hypothesis of Onsager [25, 36] that “slow fluctuations at equilibrium on average
decay according to macroscopic laws” we find, with Eq. 5.1:

1
τ
=

k
kBT

(veq
l � veq

s )2

veq
s κs

T Neq
s + veq

l κl
T Neq

l

: (5.7)

In Chapter 2 we measured τ in an equilibrium simulation and the kinetic coefficient k derived
from it was shown to give good agreement with data from nonequilibrium simulations.

In essence, Eq. 5.5 is just the statement that an instantaneous correlation exists between
∆Ns and ∆P. Thus, assuming instantaneous linear response, we could also have written

∆P(t) =
h∆P(0)∆Ns(0)i
h∆Ns(0)∆Ns(0)i∆Ns(t): (5.8)

The latter expression has the advantage that all the information in it can be taken from one and
the same two-phase simulation. No reference has to be made to separate bulk simulations. In
Tables 5.1, 5.2 and 5.3 we have listed the relevant bulk data and the factor of Eq. 5.8. The
calculation of the bulk data is described in full detail in the appendix. The agreement of Eqs.
5.5 and 5.8 is very good for both system sizes.

Now we turn to the decay of pressure fluctuations. It is difficult to conceive that an
exact instantaneous relation exists between pressure fluctuations and number fluctuations.
One would rather think that Eq. 5.5 holds true after averaging over fast fluctuations. As a
consequence one may not equate the decay times of h∆P(t)∆P(0)i and h∆Ns(t)∆Ns(0)i. To
investigate this point, we write the pressure fluctuation at time t as an instantaneous response
to the number fluctuation ∆Ns(t) (with for the moment an unknown proportionality constant
�c) plus a random component ξ(t):

∆P(t) =�c∆Ns(t)+ξ(t): (5.9)

Multiplying on both sides with ∆P(0) and taking the ensemble average gives

h∆P(t)∆P(0)i
= c2 h∆Ns(t)∆Ns(0)i� ch∆Ns(t)ξ(0)i� chξ(t)∆Ns(0)i+ hξ(t)ξ(0)i
= c2 h∆Ns(t)∆Ns(0)i� ch∆Ns(t)∆P(0)i� ch∆P(t)∆Ns(0)i
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Xfit(T ) Xfit(T eq) XEoS(T eq)

vs = 1:0513� :34068�T + :46830�T 2 1.0414 1.0419
vl = 1:0312� :15802�T + :53748�T 2 1.1823 1.1842
hs =�7:6916� :11602�T +3:2364�T 2 -6.199 -6.195
hl =�8:313+3:953�T +0:9729�T 2 -5.084 -5.047
cs

v = 1:132+4:559�T�3:2554�T 2 2.728 2.751
cl

v = 3:1172+ :75039�T�2:0286�T 2 2.654 1.398
γs

V =�1:5643+27:041�T�20:177�T 2 7.481 7.665
γl

V = 11:739�2:1269�T�7:8532�T 2 6.439 5.714
κs

T = :53244�1:5627�T +1:2256�T 2 .03867 .03989
κl

T =�:031853+ :076666�T + :11392�T 2 .07697 .07664
αs

P = :26616� :55169�T + :85314�T 2 .2962 .3058
αl

P =�2:1881+7:1913�T�4:7838�T 2 .5003 .4380
κs

S = f1=κs
T +(γs

V )
2=cs

V � vTg�1 .02454 .02464
κl

S = f1=κl
T +(γl

V )
2=cl

V � vTg�1 .03866 .03093

Table 5.1: Thermodynamic data for the bulk Lennard-Jones crystal and liquid. Fits are given
for the temperature dependence at constant pressure (P = 2:512� 10�3 ε=σ3). See the ap-
pendix for computational details. Values at T eq = 0:6972 ε=kB are shown in the second
column, and in the last column comparison is made with the thermodynamic data of John-
son [100] and van der Hoef [85].

+ hξ(t)ξ(0)i+ ch(∆P(t)�ξ(t))∆Ns(0)i+ ch∆Ns(t)(∆P(0)�ξ(0))i
= �ch∆Ns(t)∆P(0)i� ch∆P(t)∆Ns(0)i� c2 h∆Ns(t)∆Ns(0)i+ hξ(t)ξ(0)i
= �2ch∆P(t)∆Ns(0)i� c2 h∆Ns(t)∆Ns(0)i+ hξ(t)ξ(0)i ; (5.10)

where in the second step we have substituted Eq. 5.9. The final step was made on the basis of
time symmetry. The accuracy of equating h∆P(t)∆Ns(0)i with h∆Ns(t)∆P(0)i was checked
in our simulations and was shown to hold perfectly.

Given the correspondence of Eqs. 5.5 and 5.8 that we found above, the best estimate of c
would be

c =� h∆P(0)∆Ns(0)i
h∆Ns(0)∆Ns(0)i : (5.11)

In Fig. 5.1 we plotted the various contributions to the pressure fluctuation autocorrelation
function, with the above estimated value of c substituted. Clearly, the agreement of the lower
two lines is almost perfect. We found that any other value of c gave worse agreement. It
is also seen that there is a non-negligible difference between the decay of h∆Ns(t)∆Ns(0)i
and h∆P(t)∆P(0)i, so that it is not possible to perform an accurate calculation of the kinetic
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(1) (2) (3) (4)

Ns 1764.38 1794.81 1784.39 1776.84
Nl 2283.62 2253.19 2263.61 2271.16
c (Eq. 5.5) .00050526 .00050807 .00050711 .00050641
c (subst. κS for κT ) .00094267 .00094655 .00094522 .00094425
h∆P∆Pi .0066787 .0065477 .0063718 .0063196
h∆Ns∆Nsi 8391.6 8187.1 7006.3 7234.5
h∆P∆Nsi -4.8498 -4.6732 -4.1939 -4.4266
�h∆P∆Nsi=h∆Ns∆Nsi .00057794 .00057080 .00059859 .00061187

Table 5.2: Results from the fluctuations of Ns and P at equilibrium (NVT ) for the small system
(4048 particles). The columns show the results after 20,000,000 timesteps of experiments
with four different starting configurations.

(1) (2) (3) (4)

Ns 3579.47 3576.11 3652.22 3597.42
Nl 4516.53 4519.89 4443.78 4498.58
c (Eq. 5.5) .00025380 .00025372 .00025550 .00025422
c (subst. κS for κT ) .00047295 .00047284 .00047529 .00047353
h∆P∆Pi .0030865 .0029436 .0031182 .0028032
h∆Ns∆Nsi 13108 12292 13693 10381
h∆P∆Nsi -3.8981 -3.5878 -4.0642 -2.9783
�h∆P∆Nsi=h∆Ns∆Nsi .00029738 .00029188 .00029681 .00028690

Table 5.3: Results from the fluctuations of Ns and P at equilibrium (NVT ) for the intermediate
size system (8096 particles). The columns show the results after 10,000,000 timesteps of
experiments with four different starting configurations.
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Figure 5.1: Autocorrelation of pres-
sure fluctuations in the small simulation
box (4048 atoms). Shown are various
terms of Eq. 5.10: c2h∆Ns(t)∆Ns(0)i
(dashed line), �ch∆P(t)∆Ns(0)i (dotted
line), h∆P(t)∆P(0)i (bumpy line), and
�2ch∆P(t)∆Ns(0)i� c2h∆Ns(t)∆Ns(0)i.
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Figure 5.2: Autocorrelation of the random
component ξ of the pressure fluctuations in
the small simulation box (4048 atoms), taken
from Eq. 5.10.

coefficient by using the pressure fluctuations alone. This shows the merits of our solid-liquid
discriminator which makes the counting of solid particles possible.

In Fig. 5.2 we plotted the function hξ(t)ξ(0)i. It drops rapidly to very small values, which
is not surprising since one expects that the major contribution to ∆P at long times would
come from ∆Ns. The function remains fluctuating, however, over a long range of correlation
times, much longer than the pressure autocorrelation function in bulk simulations. This is
indicative of the fact that ξ does not represent the autonomous pressure fluctuations such as
they would occur in a bulk system, but should merely be interpreted as the deviation from an
exact instantaneous correlation of ∆P and ∆Ns.

We once more turn to the agreement between Eq. 5.5 and 5.8. One might argue that, al-
though the overall system is thermostatted, local fluctuations can have a distribution different
from the canonical one. For instance, if local pressure fluctuations are so fast that no energy
transfer is possible, the local subsystem behaves adiabatically and the relation between ∆P
and ∆v would be given by the isentropic compressibility κS instead of the isothermal one.
For comparison, the factor c of Eq. 5.5 is also given in Tables 5.2 and 5.3 with κS substituted
for κT . Clearly, the κT expression behaves much better. From this we conclude that at the
interface, temperature fluctuations are canonical. This conclusion is justified, since we are
not looking at the time decay here, but only at the average response of ∆P to ∆Ns.
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Figure 5.3: Fluctuation autocorrelation
functions of the number of solid parti-
cles averaged over 4 simulations with 4048
atoms (bottom line) and over 4 simulations
with 8096 atoms (top line). Also shown are
the fits to the initial regimes (dashed lines)
and the long-time regimes (dotted lines). 0 25 50 75 100 125 150
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5.4 Comparison of equilibrium and nonequilibrium re-
sults

Normalized autocorrelation functions of the number fluctuations (Eq. 5.1) were averaged
over the four independent experiments (for each box size). The result is displayed in Fig. 5.3.
Clearly, two regimes can be distinguished. To investigate if these regimes can be associated
with the regimes of interface relaxation and macroscopic growth — such as they were found
in the nonequilibrium simulations —, we fitted them to single-exponential functions. Note
that the crossover time from the initial to the second regimes is smaller for the intermediate
box than for the small box, in accordance with the findings of Chapter 4. From the relaxation
times we calculated kinetic coefficients via Eq. 5.7, once as it is printed, and once with
coefficient c according to Eq. 5.11. The results are shown in Table 5.4, together with the
linear coefficients from the fits of Eqs. 4.7 and 4.8. There is some statistical scatter in the
data, but the trends for both box sizes are the same.

In Fig. 5.4, we have plotted the interface relaxation rates as found from the nonequilibrium
simulations together with the predicted curves from Table 5.4. Within the statistical accuracy,
the results lie between the linear component of the relaxation rates and the full curve. We
conclude that the fluctuations of the interface are such that a substantial part of the nonlinear
response is probed by the system. From the figure, it can be roughly estimated that the
chemical potential differences associated with fluctuations are equivalent to undercoolings
and superheatings of maximum �0:03 ε=kB. It can also be seen that they do not depend too
much on system size. We will come back to this in the next section (Fig. 5.6).

In Fig. 5.5, we have plotted the results for the second regime, both from equilibruim
and nonequilibrium simulations. The results of both box sizes correspond very well with
each other and agree well with the nonequilibrium line. From an analysis of the results for
different stages of the run, we found that the statistical uncertainty in the slopes presented in
Table 5.4 is of the same order as the difference between the two expressions used. Given the
present statistical accuracy, we cannot draw further conclusions as to the validity of Eq. 5.11.
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Interface relaxation Macroscopic growth

Small system
τ 108.14 148.70
k (Eq. 5.7) 90.304 65.672
k (Eqs. 5.7 + 5.11) 77.582 56.420
dR=d(∆T ) (Eq. 5.7) -207.14 -150.64
dR=d(∆T ) (Eqs. 5.7 + 5.11) -177.96 -129.42
Intermediate system
τ 197.27 292.63
k (Eq. 5.7) 98.631 66.491
k (Eqs. 5.7 + 5.11) 85.537 57.664
dR=d(∆T ) (Eq. 5.7) -226.24 -152.52
dR=d(∆T ) (Eqs. 5.7 + 5.11) -196.21 -132.27
Nonequilibrium results (Eqs. 4.7 and 4.8)
(dR=d(∆T ))eq -184.19 -142.07

Table 5.4: Relaxation times τ and their associated kinetic coefficients as measured from Fig.
5.3 and Tables 5.2 and 5.3. For the small system τ was calculated from fit regions of 10-90
and 90-150 (mσ2=ε)1=2, and for the intermediate system from fit regions of 15-60 and 60-150
(mσ2=ε)1=2, respectively.

5.5 The equilibrium interface

In this section we will take a closer look at the nature of the interface fluctuations at equilib-
rium. It is generally known that the Lennard-Jones FCC (100) crystal-melt interface is very
diffuse and extends over several interlayer spacings [32, 89]. The melting temperature lies
well above the thermodynamic roughening transition, which means that growth can occur
everywhere on the surface without two-dimensional nucleation barriers. Furthermore, for the
FCC (100) surface, all growth sites are equivalent (in contradiction to for instance the (111)
surface).

In Fig. 5.6, we have plotted the distribution of the number of solid particles Ns. The
distribution is very smooth with no indication of any ‘preferred’ numbers. This may serve
as evidence that the interface is perfectly rough. Would it have been only slightly faceted,
then certain numbers would have shown peaks in the distribution. (Note that the surfaces in
both systems contain 50 atoms, so the distribution of Ns represents growth and melting over
several layers.) The distribution of N is broader in the intermediate box than in the small
box. This is to be expected, since the larger bulk phases in the intermediate box can more
easily relax local pressure fluctuations and thus give more ease to fluctuations of the interface.
As a consequence, the broadness of any time-averaged interface profile would depend on
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Figure 5.4: Interface relaxation rates vs. tem-
perature. The curved solid line shows the
fit of Eq. 4.8, the straight solid line shows
its linear component. The other lines show
equilibrium results for the small box (dashed)
and the intermediate box (dotted). For both
boxes, the lines with the largest slopes refer
to Eq. 5.7, the others to Eqs. 5.7 + 5.11.
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Figure 5.6: Equilibrium distributions of
the number of solid particles in the small
box (solid line) and the intermediate box
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Figure 5.7: Time-averaged profiles of the
density and the order parameter for the small
box, calculated over 1,000,000 timesteps.
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Figure 5.8: Time-averaged (dotted lines) and
instantaneous (solid lines) interface profiles
for the small box (bottom half) and the inter-
mediate box (top half).

the overall size of the system, while the local instantaneous interface profile would hardly
be affected. The fact that the macroscopic growth rates we found in Fig. 5.5 are almost
independent of system size is a good indication of this point.

In Fig. 5.7 we have plotted the time-averaged equilibrium profile (over 1,000,000 time-
steps) of one interface. Shown are both the density profile and the order parameter profile
which is defined (for each histogram bin zi with a width ∆) as

Φ(zi) =
1
A

*
N

∑
k=1

Θ(Ψk�0:5)δ(zi� zk)

+
; (5.12)

with Θ the unit step function, A the cross-sectional area, and δ the discretized delta function,
i.e., δ(x) = 1=∆ for 0 < x < ∆ and zero otherwise. The order parameter profile represents
the counting of liquid-like particles in each bin (cf. the BT-profile in Ref. [97], which is
essentially the same, but divided by ρ). The order profile coincides with the density of the
liquid at the bulk liquid side and would give zero at an ideal crystal side (the little bumps in
the crystalline region represent the average amount of imperfections). The order parameter
in conjunction with the density profile provides a much more revealing representation of
the equilibrium interface than the density alone. We have used the interlayer spacing d as
unit on the z-axis. It can nicely be seen that, on going from the crystal to the liquid phase,
the interlayer spacings gradually grow larger, in good accordance with the results of others
[32, 89].

To investigate the instantaneous structure of the interface, we took 5 representative stages
in the long (20,000,000 timesteps) run of the small box. At each stage, we performed a sim-
ulation of 100,000 timesteps and wrote 10 subsequent configurations (one timestep apart)
once every 200 timesteps. To obtain sufficient accuracy, the atomic positions of the 10 con-
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figurations were averaged and profiles were calculated. We conjecture that these averaged
positions are still representative of the instantaneous interface. The profiles were smoothed
with a Gaussian filter as follows (see also Hayward and Haymet [82]):

Φ0(z) =

nZ

�n

dz0w(z� z0)Φ(z0); (5.13)

with

w(z� z0) =
1

σ
p

2π
exp

�
� 1

2σ2 (z� z0)2
�
; (5.14)

where we took the interlayer spacing d as width σ of the Gaussian. The smoothed Φ-profiles
were then fitted to a tanh funcion:

Φfit(z) = φl[1� f (z)]+ f (z)φs; (5.15)

with

f (z) =
1
2

�
1� tanh

�
z� z0

w

��
: (5.16)

For each 10-step-averaged frame, the position z0 of the right-hand interface was taken to
be the new origin. Profiles (of the right-hand interface) were then constructed on the basis
of the atomic positions with respect to this origin. The thus found instantaneous interface
profile is plotted in the bottom half of Fig. 5.8 (solid line). The solid line thus represents
the instantaneous interface profile, as all interface positions z0 were put on top of each other.
We also calculated the time-averaged profile, i.e., the distribution of the order parameter with
respect to the center of mass of the crystal. This profile was then shifted to have its inflexion
point at the origin and drawn as the dotted line in Fig. 5.8. It is shown that the width of the
instantaneous interface is smaller than the one of the time-averaged interface. We repeated
the procedure for the intermediate box size (now with 4 runs of 100,000 timesteps), the results
of which are shown in the top half of the same figure. The time-averaged profile of the larger
box is broader than that of the smaller box (in accordance with the findings of Fig. 5.5),
whereas the widths of the instantaneous profiles are hardly affected by the overall box size.

5.6 Conclusions and discussion

We have investigated the performance of a previously introduced method (Chapter 2) to ex-
tract the kinetic coefficient for crystal growth from fluctuations in an equilibrium simulation.
We applied the method to the same two system sizes that we used in an earlier nonequilib-
rium study (Chapter 4). We showed that the two regimes that were found previously (an
initial regime of interface relaxation and a long-time regime of macroscopic growth) were
consistently reproduced by the equilibrium method. This also implies that the same amount
of caution must be exercised in calculating growth kinetics from equilibrium simulations as
in the nonequilibrium counterpart. In both cases, long runtimes, long observation times, and
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large box sizes are needed to avoid the confusion of growth rates with interface relaxation
rates.

We found that the crossover time between the initial regime and the long-time regime
becomes smaller when the size of the system is increased, again in accordance with the
nonequilibrium study. This raises the question whether the initial regime would disappear
completely in the limit of infinite system size. We interpreted the initial regime to be associ-
ated with a relaxation of the equilibrium interface shape to the shape that corresponds to the
(nonequilibrium) circumstances of the experiment. If this interpretation is correct, it seems
reasonable to conjecture that there must be a size limit where the crossover time levels off,
which means that the initial regime should not disappear completely. It would be interesting
to further investigate this.

We slightly modified the equilibrium method to incorporate only properties that can di-
rectly be evaluated from the two-phase simulation, whereas the earlier approach required
external input from separate bulk simulations. Within the statistical accuracy, it was shown
that both approaches agree well, although we could not conclude which one of them gives
the most reliable results.

With the modification of the method, we found that, on average, a close correlation exists
between pressure fluctuations and fluctuations of the amount of crystalline material. We
studied the decay of the autocorrelation function of pressure fluctuations and found that,
because the above-mentioned correlation is not instantaneous, this cannot be equated to the
decay of the autocorrelation function of number fluctuations. The number fluctuations of
solid particles h∆Ns(t)∆Ns(0)i provide the most direct route to calculate k from equilibrium
simulations.

Finally, we studied the density and order parameter profiles of the equilibrium interface.
A clear distinction could be made between the time-averaged overall profile and the average
instantaneous profile of the interface, the latter being noticeably smaller. This is of major
importance in for example classical Density Functional Theory (DFT) where averaged pro-
files are mostly used to calculate both energy and entropy contributions to the free energy of
the system, whereas it seems reasonable that for energetic considerations the instantaneous
profile should be used.
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Figure 5.9: Enthalpies and volumes per
atom vs. temperature, as measured from
4,950,000 production steps in a bulk liq-
uid (512 atoms) and a bulk crystal (500
atoms) in different ensembles: NPT (filled
diamonds), NVT (open squares), and NVE
(filled circles). The solid lines represent our
fits over the measurement domain (see also
Table 5.1). The dotted lines represent the
expressions of Johnson (liquid) and van der
Hoef (crystal).
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5.A Appendix. Bulk thermodynamic properties of the
Lennard-Jones crystal and liquid

In this appendix, we will describe how we derived the bulk thermodynamic properties for the
Lennard-Jones liquid and FCC crystal as shown in Table 5.1. Most of these could also have
been derived from collections (and fits) of thermodynamic data on the Lennard-Jones system
by others, the two most recent ones being the Johnson expression [100] (for the liquid) and
the van der Hoef expression [85] (for the crystal). The use of these data, however, requires
some caution. They represent fits over a limited range of state points and one has to be careful
that all state points that one wants to use are covered by the expression. In the following, we
will compare our own results with both expressions from the literature.

The procedures for both phases were exactly the same. All liquid calculations were done
on a system of 512 particles and all crystal simulations on a system of 500 particles. We used
cubic boxes with periodic boundaries. All simulations were run for 5,000,000 timesteps of
which 50,000 timesteps were regarded as equilibration and thus disregarded in the evalua-
tions. Nosé-Hoover dynamics were applied with a timestep of 7:480�10�4

p
mσ2=ε and re-

laxation times τT = 0:0748
p

mσ2=ε (for thermostatted simulations) and τP = 0:748
p

mσ2=ε
(for barostatted simulations).

To obtain the appropriate densities, we started out with NPT simulations at a range of
temperatures and at the desired pressure. The average particle volumes are plotted in the top
half of Fig. 5.9. In all figures, the solid lines represent our fits through the data (see also
Table 5.1) and the dashed lines represent the expressions of Johnson and van der Hoef. It
is clear that the van der Hoef expression describes our results well over the entire range of
temperatures. The Johnson expression starts to deviate for lower temperatures. This is not
surprising since at that point we enter the metastable liquid region, which is not covered by
the data used by Johnson et al. Their fit region ranged from T = 0:7 to T = 2:0. Our figure
clearly shows the danger of extrapolating fitted results out of the fitted region (which becomes
even more apparent in the thermodynamic response functions in subsequent figures).

Over the entire temperature range, we subsequently performed NVT and NV E simula-
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3 Figure 5.10: Isochoric heat capacity and
thermal pressure coefficient vs. tempera-
ture in a bulk liquid and a bulk crys-
tal. Symbols denote results from Eqs.
5.A.2 (filled circles, solid line shows fit),
5.A.1 (open squares), 5.A.3 (open trian-
gles), 5.A.4 (filled circles, solid lines show
fits), and 5.A.5 (open diamonds). Dashed
lines represent the expressions of Johnson
(liquid) and van der Hoef (crystal).

tions, at the densities that we found with the NPT simulations. In all ensembles, we calculated
the average enthalpy per particle h, the results of which are shown in the bottom half of Fig.
5.9.

For calculating the thermodynamic response functions, we evaluated the average fluctu-
ations of several quantities in our simulations. For a detailed discussion of the use of fluc-
tuation formulas to this end, the reader is referred to the literature [4, 5, 72]. The isochoric
heat capacity per atom (cV = N�1(∂U=∂T)V ) was calculated from the fluctuations of the total
energy and of the potential energy, both in the NVT ensemble, and from the fluctuations of
the kinetic energy in the NV E ensemble:

h∆U∆UiNV T = kBT 2NcV (5.A.1)

h∆Φ∆ΦiNV T = kBT 2(NcV � 3
2

NkB) (5.A.2)



∆T̂ ∆T̂

�
NV E =

3
2

Nk2
BT 2

�
1� 3NkB

2NcV

�
(5.A.3)

The results are shown in Fig. 5.10. Clearly, Eq. 5.A.2 gives the best statistics, so that data
were used for the fit.

The thermal pressure coefficient (γV = (∂P=∂T )V ) was calculated from:

∆Φ∆P̂

�
NV T = k2

BT 2 (γV �ρkB) (5.A.4)



∆P̂∆Φ

�
NV E =

Nk2
BT 2

V

�
1� 3VγV

2NcV

�
; (5.A.5)

the results of which are also plotted in Fig. 5.10. Given the small variations of both cV and
γV for the crystal over this temperature range (see the scale in the figures), the van der Hoef
expression gives satisfactory results. The Johnson expression seems to be way off for both
properties, but the insets in the figures show that the data converge to the expression just
above T = 0:7.
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Figure 5.11: Isothermal compressibility and
thermal expansion coefficient vs. tempera-
ture in a bulk liquid and a bulk crystal. Sym-
bols denote results from Eqs. 5.A.4 (filled
circles, solid lines show fits), 5.A.5 (open
diamonds), and 5.A.7 (filled circles, solid
line shows fit). Dashed lines represent the
expressions of Johnson (liquid) and van der
Hoef (crystal).
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Finally, the isothermal compressibility (κT =�V�1(∂V=∂P)T ) and the thermal expansion
coefficient (αP =V�1(∂V=∂T )P) were calculated with

h∆V∆V iNPT =VkBT κT (5.A.6)

and 

∆V∆(U + P̂V )

�
NPT = kBT 2VαP: (5.A.7)

Results for the latter two properties are shown in Fig. 5.11.
Adams [1] has emphasized that when fluctuation formulas such as the above are used in

a computer simulation, it is advisable to cross-check them with the thermodynamic identity
αP = κT γV . A quick check with the equilibrium values in Table 5.1 shows that the agreement
is good.

75





Part III

Self and transport diffusion in
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6 Diffusion in zeolites: a
historical perspective

In this chapter, a brief overview will be given of the development of zeolite sci-
ence and technology, from the early discovery of the mineral in the 18th century
to present-day applications. We will start with the ancient mineralogical studies,
followed by the development of industrial synthesis routes and commercial ap-
plications. In the third section, we will focus on the scientific understanding of
transport of guest molecules in zeolitic channels, both from theory and experi-
ment. Finally, we will present an outline of the chapters to follow.

6.1 Those boiling stones

Son of a renowned army officer, the Swede Axel Fredrik Cronstedt (1722-1765) was destined
to follow in his father’s footsteps. For a sound preparatory education, he was sent to study
mathematics at the university of Uppsala. But when he once found himself in the audience of
Valerius’ lectures on mineralogy, he could not think of anything else anymore and his stud-
ies went off in a new direction. By the year 1742, he had mastered most of the mineralogy
courses and entered the college of rock science as a student teacher. During subsequent years
he undertook many field trips into the local mountains, both on his own and accompanied by
the famous scientists of his time. Soon he received widespread fame for his creativity and
original scientific methods. He was among the first to stress the importance of the chemi-
cal constituents of minerals. In 1751, he isolated a new element from the mineral niccolite
and named it ‘Nickel’. For this achievement he was admitted to the ‘Vetenskapsakademien’
(scientific academy) in 1753.

Cronstedt became also known for his introduction of the blowpipe in mineralogy. This
was a long, narrowing tube which, when blown into at the wide end, produced a concentrated
jet of air at the narrow end. This jet, directed into a flame, was used to locally heat the mineral
to very high temperatures. Information concerning the nature and composition of the mineral
could then be gathered from the colour of the flame, the nature of the vapours formed, the
oxides or metallic substances left behind, and so on. The blowpipe remained a key tool in
chemical analysis and has been used in university courses of mineralogy far into the 20th
century. So much knowledge was gained by the chemical analysis that Cronstedt felt justified
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in suggesting that minerals be classified according to their chemical structure instead of their
appearance (such as outer shape and physical properties). Well aware of the revolutionary
character of this idea, he published his new scheme anonymously in 1758 [42]. Nevertheless,
it was a great success and the book was translated into Danish, English, German and French.

Two years earlier, his blowpipe had led him to yet another discovery when he used it
on the mineral stilbite. He observed that this mineral released excessive amounts of steam
upon heating. Intrigued by this peculiar behaviour, he named the material ‘zeolite’ [41] after
the Greek words ζέω (to boil) and λίθoς (stone, rock, cf. ‘lithography’). Soon he identified
zeolites as a new class of minerals and found that they were hydrated aluminosilicates of the
alkali and alkaline earths.

After this early observation, several decades passed before the importance of zeolites was
recognized outside the field of mineralogy. In 1840, Damour observed that crystals of zeolites
could be reversibly hydrated with no apparent change in their transparency or morphology
[43]. Shortly thereafter, in 1857, Eichhorn showed the reversibility of ion exchange on zeolite
minerals [49]. The first synthesis of a zeolite (levynite) was reported as early as 1862, by de
St. Claire-Deville [38]. Friedel in 1896 [62] brought up the picture of a dehydrated zeolite
as an open spongy framework after his observation that it absorbs various liquids such as
alcohol, benzene, and chloroform. Today, the mineralogist Friedel is best known of his work
in organic chemistry (the ‘Friedel-Crafts reaction’).

All early investigators studied the naturally occurring zeolites chabazite, heulandite and
analcite. The dehydrated forms were referred to as ‘activated zeolites’ since it is only after
the removal of the included water that the absorption characteristics appear. Several workers
at the end of the 19th century discovered the ability of activated chabazite to remove odours
from the air (for which it is still widely used today). Its absorption of ammonia, air, hydrogen,
and other molecules was reported by Grandjean (1909) [69]. The first account of its capabil-
ity of selective absorption appeared in 1925, when Weigel and Steinhoff [185] reported the
rapid occlusion of water, methyl alcohol, ethyl alcohol or formic acid, and the simultaneous
exclusion of acetone, ether or benzene. This ability to selectively take in molecules into their
porous structure, whilst rejecting others on the basis of their molecular dimensions, has given
zeolites the name ‘molecular sieve’, a term introduced by McBain in his review article of
1932 [126]. By that time, the Friedel picture had become firmly established by experiments.
This became possible after the invention of X-ray structure determination which had been
first applied to zeolites in 1930 by Taylor and Pauling [143, 144, 166].

6.2 The birth of zeolite science and technology

By the mid-1930’s, most of the properties of zeolites which today are considered fundamental
for their numerous applications (e.g., ion exchange, absorption, molecular sieving) had been
described in the literature. Besides their physico-chemical properties, the basics of their
structures had also been elucidated. Zeolites were known to be microporous aluminosilicates
with a well-defined pore structure of atomic dimensions. Most were found to be thermally
stable even after the removal of the ‘zeolitic’ water. Few accounts of artificial hydrothermal
synthesis of zeolites had been reported.
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Despite the slow but steady increase of knowledge over the first 180 years, their rarity —
they typically occur as minor constituents in cavities in basaltic or volcanic rock — prevented
an extensive commercial use of zeolites. The interest of the scientific community, however,
was aroused when a man now regarded as the ‘founding father’ of zeolite science, Richard M.
Barrer, started a thorough and systematic study of the sorption of polar and non-polar gases by
zeolites. In his 1938 paper [9], he related the sorptive properties to the structural properties
known from X-ray measurements. For example, the absorption isotherm of hydrogen in
chabazite expressed as logx=p vs. logx was found to show an inflexion point. This was
interpreted as an indication that not all available sites in the chabazite skeleton were similar,
hence the resultant isotherm should be composed of two superposed isotherms. (Note that
many decades later, this behaviour was also found in Monte Carlo simulations, for example
for the absorption of heptane in silicalite [182]).

Barrer remained active in the field of zeolites during his scientific career until he passed
away in 1996. His many papers include not only accounts of absorption and molecular sieving
properties, but also many syntheses of zeolitic structures. He was among the first to propose a
scheme for naming zeolites (in 1945), but it would last until the 1970’s before he laid down a
scheme that was adopted as the current IUPAC standard [13]. In 1968, he initiated the annual
International Zeolite Conferences, which are still held every 3rd year. In 1975, Passaglia and
Pongiluppi named a newly discovered zeolite of the stilbite topology ‘Barrerite’ [142].

Inspired by the huge potential of zeolites, together with their rare occurence in nature,
two researchers at the Linde division of Union Carbide Corporation, Milton and Breck, set
out to search for synthetic routes to produce zeolite structures. Between 1949 and 1954, they
(internally) reported the synthesis of zeolites A (now known as LTA = ‘Linde Type A’), X,
and Y, which appeared in the ‘open’ patent literature around the 1960’s [22,129,130]. Milton
and Breck found a way to synthesize these materials under mild hydrothermal conditions
(i.e., < 100 �C and at atmospheric pressure). In fact, their reactive gel crystallization method
— where Al2O3 and SiO2 are combined with an alkali hydroxide into a reactive gel from
which the zeolite is formed — is still the basis for most present-day synthesis routes.

The first commercial zeolites were mainly applied to dry refrigerant gas or natural gas.
In 1959, Union Carbide introduced the ISOSIV process for normal-/iso-paraffin separation,
and in the same year they developed a zeolite Y-based catalyst for isomerization reactions.
Mobil Oil introduced the use of zeolite X as a refinery cracking catalyst in 1962. Easily
separable and fully re-usable, zeolites provided a huge potential in clean catalytic processing.
Encouraged by the 1963 US Clean Air Act, this resulted in an explosive growth of their use
in the oil industry.

Barrer took the next step in zeolite synthesis in 1961 [12] by introducing alkylammonium
cations into the reactive gel. With tetramethylammonium (TMA) in sodium aluminosilicate
gels, he synthesized N-A, the siliceous analogue of zeolite A. Around the same time, Kerr
[109], synthesized the new structures ZK-4 and ZK-5 (ZK = ‘Zeolite Kerr’) also using organic
cations. It was shown that the organic additives formed clusters in the gel that acted as
precursors for the final shape of the zeolitic channels. In this way, many new forms could be
produced, including zeolites with a higher Si/Al ratio than naturally occurring zeolites. It was
soon discovered that zeolite structures with higher Si content were more stable. Also, because
Al3+ ions at tetrahedrally co-ordinated sites were replaced by Si4+, high silica frameworks

81



6. DIFFUSION IN ZEOLITES: A HISTORICAL PERSPECTIVE

Figure 6.1: AlPO4-5 structure, viewing
down the unidirectional pores.

were less charged. This made them less suitable for ion-exchange applications (since there
were less counterions present), but all the more suitable for catalyzing reactions that had to
take place in an hydrophobic/organophilic environment, such as those in the petrochemical
industry. For this reason, all the efforts in zeolitic synthesis were directed towards increasing
the Si content, which by the end of the 1960’s led to the discovery of high silica zeolites
such as Beta [183] and ZSM-5 [6,113] (ZSM = ‘Zeolite Secony Mobil’). The latter provided
the perhaps biggest technological innovation when it was discovered that methanol could be
converted to gasoline over ZSM-5 [128] in a single step. Up until then, this was done via the
Fischer-Tropsch process which produces a wide range of hydrocarbons, necessitating many
seperation and upgrading steps to make commercial fuel.

The success of the organic-additive driven synthesis led in the early 1980’s to the dis-
covery by Wilson et al. [191] of a completely new class of materials, the aluminophosphate
molecular sieves. These are made of neutral AlPO4 building blocks and display no ion-
exchange properties. On the other hand, they can be made with a wide variety of pore di-
mensions (ranging from 0.35 to 1.25 nm), both in structural analogues of the aluminosilicate
molecular sieves and in new forms. The absence of counterions in the pores and of charges
in the lattice makes them less suitable for catalysis, but all the more suitable for molecular
sieving since there is no blocking by couterions. One member of the aluminophosphate fam-
ily is the unidirectional pore structure AlPO4-5 [17,146] (see Fig. 6.1), which is the object of
study in Chapters 7 – 9.

Today, zeolites (both synthetic and natural) are used in numerous applications in a wide
variety of fields. To name but a few: odour removal from the air, cleaning of nuclear waste (by
absorbing heavy atoms), waste water treatment (absorbing ammonia), removal of moisture
and odours from cat litter boxes, irrigation in agriculture (taking in water during heavy rains
and slowly releasing it during dry periods), water softening in detergents, and many, many
more. For a more detailed description of these (and other) fields in zeolite science, the reader
is referred to several books [15, 37, 48].
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6.3 Diffusion in zeolites

To succesfully apply or, eventually, design a proper shape-selective catalyst or molecular
sieve for industrial processing, it is of utmost importance to understand how the channel
network influences the movement and/or the reaction pathway of the molecules inside. In
an isotropic medium, the driving force for molecular diffusion is the concentration gradient
∂ρ=∂z. (Throughout this study, we will represent concentration by the number density ρ.)
The diffusion coefficient Dt is the proportionality constant relating the particle flux to the
driving force, as expressed in Fick’s first law [56]:

J =�Dt

�
∂ρ
∂z

�
: (6.1)

There are several regimes to be identified in the diffusion in porous solids, depending
on the (mean) size of the pores. For pores of the order of 1 µm or larger, normal gaseous
diffusion prevails (D � 10�5 m2/s). When the pores become smaller than the mean free
path of gas molecules (10�7–10�8 m), collisions with the wall occur more frequently than
collisions with each other. In the ultimate limit, each molecule diffuses independently with
the mean free path determined by the pore diameter. This regime is called Knudsen diffusion
and the diffusion coefficient only depends on the mean thermal velocity of the molecules and
the pore diameter (and is independent of concentration or pressure):

DKnudsen =
1
3

�
3kBT

m

�1=2

Rpore: (6.2)

Diffusion coefficients in this regime typically fall in the range 10�5–10�8 m2/s, which is
the prevalent range for most ‘macroporous’ catalysts. Diffusion coefficients measured in the
microporous zeolites, however, span an enormous range from 10�8 to less than 10�20 m2/s.
The mass transport within the pores of zeolites is influenced by both sorbate-wall interactions
and sorbate-sorbate interactions. This regime has been named configurational diffusion by
Weisz in 1973 [187].

The first theoretical foundations of zeolitic diffusion were presented by Barrer and Jost
in 1949 [11]. They were based on classical diffusion theory as expressed by Fick’s first law
(Eq. 6.1). Assuming the diffusion coefficient is independent of concentration, this law can
be transformed into Fick’s second law, which gives the change of concentration in a fixed
volume element with time. In one dimension:�

∂ρ
∂t

�
= Dt

�
∂2ρ
∂z2

�
: (6.3)

Barrer’s group performed many uptake measurements, i.e., experiments in which the time to
load the zeolite was measured. With certain assumptions on the pore size, diffusion coeffi-
cients could be deduced from the measurements. It appeared that the diffusivities were highly
temperature dependent and displayed an Arrhenius behaviour:

Dt = Aexp

�
� Ea

RT

�
: (6.4)
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Activation energies Ea ranging from 0.3 to as much as 25 kcal/mole were reported by sev-
eral authors over the years. Barrer tried to relate the pre-exponential factor to a jumping
frequency between adsorption sites. This can be seen as the first account of a hopping picture
of diffusion in zeolites, as early as 1941 [10]. It was soon realized, however, that substan-
tial deviations from Eq. 6.3 could be expected since (1) zeolites are generally not isotropic,
(2) not all molecules will be equally mobile, and (3) channels may become blocked at high
loadings, which would render Dt concentration dependent.

It was argued in the paper of Barrer and Jost that, since diffusion is essentially the macro-
scopic manifestation of the tendency to approach equilibrium, the true driving force should
not be the concentration gradient, but the gradient in the chemical potential µ. In fact, this
was first explicitly stated by Einstein [51]. The flux is then expressed as

J =�F(ρ)ρ
�

∂µ
∂z

�
=�F(ρ)ρ

�
∂µ
∂ρ

��
∂ρ
∂z

�
; (6.5)

with the relation between Dt and the mobility F given by

Dt = Fρ
�

∂µ
∂ρ

�
: (6.6)

Assuming the absorbens inside the pore is in equilibrium with the gas outside the pore, this
leads to

Dt = FρkBT

�
∂ ln f

∂ρ

�
= FkBT

�
∂ ln f
∂ lnρ

�
= D0

�
∂ ln f
∂ lnρ

�
; (6.7)

with f the activity of the gas (= p in the case of an ideal gas) and D0 the so-called corrected
diffusivity. The above relation between Dt and D0 is usually called the Darken equation [44].
(Note that it is the corrected diffusivity that also appears as the Maxwell-Stefan diffusivity in
the Maxwell-Stefan formalism for multicomponent diffusion [125, 163]).

Transient uptake measurements remained the main method of measuring diffusion coeffi-
cients in zeolites for many decades. One of the groups that contributed most to this field is the
group of Ruthven in Canada [151]. The measured diffusivity Dt is also called the transport
diffusivity, i.e., the transport coefficient as measured in the presence of a macroscopic gradi-
ent. This is to be distinguished from the tracer or self-diffusion coefficient which describes
the motion of a tagged particle in equilibrium with like particles. The latter is given by for
instance the Einstein equation, which reads (in one dimension):


z2�= 2Dst: (6.8)

It was argued that in the limit of infinite dilution, where no correlations exist between ad-
sorbed particles, D0 should become equal to Ds. Hence (at low loadings, via the Darken
equation), the uptake experiments could be used to measure both Dt and Ds.

Some controversy remained, however. In 1967, Weisz and Zollinger [186] suggested that
in the presence of strong adsorption sites, part of the molecules could become immobile,
thus not taking part in the diffusion process. For that reason, the concentration of the mobile
species should be taken as the driving force. Their model, however, was derived for macro-
pore systems (the uptake of dye molecules in fibers) and Riekert in 1971 [147] argued that,
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because of the small pore diameters in zeolites, the coexistence of a gaslike phase with an
immobile phase would be hardly conceivable.

Serious complications arose in the late 1970’s when the group of Pfeiffer and Kärger
pioneered a new technique and started to measure intracrystalline self-diffusivities by Pulsed
Field Gradient (PFG) NMR spectroscopy. In this method a magnetic field gradient is applied,
causing the precession of the transverse magnetization of the nuclear spins to depend on
their spatial co-ordinates. Two successive gradient pulses are applied of equal magnitude and
opposite sign. If particles have not moved in between the pulses, the effect of both pulses
is exactly cancelled, but when they have moved the intensity of the transverse magnetization
will not be fully restored. From this the self-diffusion of the particles can be derived.

Even after taking into account all the correction factors, large discrepancies were found
between the PFG-NMR measurements and the results of Ruthven. In a joint effort lasting
many years, the two groups tried to resolve the problems, exchanging zeolite crystals and
performing both methods on the same samples. In 1989, Kärger and Ruthven [103] con-
cluded that some of the discrepancies could not be removed and must reflect real intracrys-
talline phenomena. They added the remark that there is a large difference in timescale of the
measurements: PFG-NMR is limited to the order of a few milliseconds, whereas most uptake
methods operate on the scale of seconds. The problem of timescales will also be addressed
by us in Chapter 7.

In their struggles to overcome the discrepancies, Ruthven’s group has found several pos-
sible problems associated with uptake measurements: (1) there are large gradients involved
(beyond the linearity of Fick’s law), (2) the methods inherently involve unsteady states, and
(3) the experiments are often irreversible. Yasuda introduced the Frequency Response (FR)
technique [192–194]. In this method the external pressure is periodically varied, which might
more easily eliminate the influence of external resistances. The diffusivity is obtained from
the characteristic response curve within the regime of Henry’s law. In the late 1980’s, Eic
and Ruthven introduced the Zero Length Column (ZLC) method. In this method, the zeolite
is first equilibrated with the sorbate at a very low external concentration. At time zero the
sample is desorbed by a purge gas (Ar or He), and the sorbate concentration in the purge
gas is followed chromatographically. By using very high purge rates, the sorbent concentra-
tion at the crystal surface is kept close to zero, which eliminates any external mass transfer
resistance.

In recent years, several other methods have been introduced, to study both self- and trans-
port diffusion: in Fourier Transform Infrared spectroscopy (FTIR) [137] the increase in IR
band intensity is followed in time. In Quasi-Elastic Neutron Scattering (QENS) [34] the hy-
drogen atoms of the absorbent serve as scattering centers; the magnitude of the Doppler shift
of the outgoing wave depends on the mobility of the scattering centers. Just very recently, the
QENS technique was used to simultaneously measure self- and transport diffusion, by using
both hydrogen and deuterium atoms in the absorbent [99]. For a more detailed description
of experimental methods, we refer to the book of Kärger and Ruthven [106] and references
therein.

To sum up, several experimental methods exist, each with their own specifics regarding
timescales, length scales, and their being equilibrium or nonequilibrium methods. Some of
the differences between the results can be attributed to these specifics, while others are due
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to deviations from the Darken equation, or even anomalous diffusion.
It seems only natural with the advent of molecular dynamics simulations and stochastic

simulations, that several attempts have been made to reproduce the results of one or more
experimental measurements. Being computationally much simpler, most simulations have
thus far been aimed at self-diffusion (Eq. 6.8) and not at transport diffusion. At this point we
mention one particular example where simulations have been of great help in understanding
experiments: the case of single-file diffusion. When pore sizes are such that molecules cannot
pass each other in the pores, the Einstein equation does not hold anymore. Instead, the mean
square displacement scales with the square root of time. This effect has been found both
by theory [104] and experiment [115]. In an extensive simulation study of the influence of
system sizes and boundary conditions, Hahn and Kärger [75] could predict the conditions at
which the anomalous behaviour should be found.

The first calculation of transport diffusion by molecular dynamics simulations was done
by Maginn et al. [123]. They mimicked the experimental nonequilibrium situation in several
ways in their simulation system.

Space it too limited here to mention all the topics where molecular simulations have
contributed to the understanding of transport phenomena in zeolites. For an excellent review,
the reader is referred to Keil et al. [108].

6.4 Outline of subsequent chapters

In the following three chapters our object of study will be the aluminophosphate AlPO4-5.
This pore system provides a suitable model system to study configurational diffusion in ze-
olitic channels for several reasons. First, it consists of unidirectional, non-interconnected
pores. This way, we can focus on the movement in single channels, without complications
by the interplay of diffusion in different (mostly anisotropic) directions. Second, the alu-
minophosphate zeolites have neutral lattices. This is advantageous in simulations as one does
not have to calculate the Coulombic interactions which scale with 1=r and thus have a much
longer range than dispersion interactions (which scale with 1=r6). Finally, in neutral zeolite
networks there are no counter-ions present, which means that the guest molecules will not be
hindered by the presence of other substances.

In Chapter 7 we will study the self-diffusion of methane in the AlPO4-5 channels. The
size of methane molecules is such that two molecules may just about pass each other in the
channels. The question whether or not this is possible has enormous implications on the
type of diffusion they will display. Nevertheless, experimental investigations on this question
give contradictory results [74, 98, 115, 138]. Besides short-timescale molecular dynamics
simulations, we will describe the construction of a simple stochastic model simulation, which
enables us to go to much larger length and time scales than in molecular dynamics. With this
model, we will show that, due to infrequent passings, a normal diffusive regime is found at
long times.

In Chapter 8 we will study the movement of (substantially smaller) argon atoms in the
same system. Here we will focus on calculating the transport diffusion coefficient. Others in
earlier simulations studies have calculated this quantity by various nonequilibrium methods.
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We will extract this nonequilibrium property from density fluctuations in an equilibrium sim-
ulation. To do so, we make use of Onsager’s regression hypothesis, in the same way as we
calculated the kinetic coefficient of crystal growth from equilibrium simulations in Chapters
2 and 5. An advantage of the presented equilibrium method is that it provides a direct way to
investigate if, and when, the linear response regime is reached. This is because our formula
contains an explicit dependence of the diffusion coefficient Dt on the k-value of the probed
density wave. In the linear response regime Dt is seen to level off to a plateau value (i.e., Dt

becomes independent of k).
Just very recently, some groups have used an Einstein expression to derive the collec-

tive diffusion coefficient from nonequilibrium simulations (where we use the Green-Kubo
approach). Their representation, however, does not have an explicit k-dependence [153, 154,
161]. In Chapter 9 we will compare their approach with ours and look at the advantages and
disadvantages of both methods.
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7 Unidirectional diffusion of
methane in AlPO4-5

Tracer diffusion of methane molecules in the unidirectional channels of AlPO4-5
has been studied by means of molecular dynamics simulations. A one-dimensio-
nal hop-and-cross model is introduced and shown to be able to reproduce the
molecular dynamics results accurately with the profit of an extensive speed-up
in computation time. After elimination of system size effects by using the new
model, two regimes can be recognized: a short-time regime where the mean
square displacement is proportional to t0:6, and a long-time regime where the
proportionality is linear.�

7.1 Introduction

Zeolites and other molecular sieves have found widespread applications in catalysis, ion-
exchange and separation technologies. They owe their high (shape-)selective power mainly
to their well-defined nanoporous structures, which allow some molecules to pass through the
pores and forbid the transport of others. The confinement of a fluid in pores of nanometer
scale largely influences its diffusion mechanism, and sometimes leads to deviations from
Fickian behaviour. Because of their importance for diffusion-limited catalytic reactions and
separation processes, these phenomena have attracted the interest of both experimentalists
and theoreticians.

In the case of zeolites with straight non-connected pores, like ZSM-12, AlPO4-5, and
VPI-5, diffusion takes place in one single direction. If moreover the diffusing molecules are
of such dimensions that they cannot pass each other in the channels, the diffusion becomes
of single-file type. The time dependence of the mean square displacement can be written in
the following general form:


z2�= 2Ftα (7.1)

Whereas in the case of normal diffusion α would be equal to 1 (in which case the factor F
would correspond with the tracer diffusion coefficient D), the case of single file diffusion

� The work desribed in this chapter previously appeared in J. Chem. Phys. 110(23), 11514 (1999). [168]
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leads to α = 0:5. The latter result had already been established theoretically in the late seven-
ties by Fedders et al. [54, 55, 155], and has later been derived in alternative ways by, among
others, van Beijeren et al. [14] and Kärger et al. [73, 104]. For methane in AlPO4-5, the
typical single-file behaviour has been observed experimentally by PFG-NMR measurements
of Kukla et al. [74, 115], although this was contradicted by findings of Nivarthi et al. [138]
(Fourier transform PFG-NMR) and Jobic et al. [98] (QENS), both indicating normal diffu-
sion behaviour for this system. The three studies correspond to quite different timescales of
observation (Kukla et al.: 1-100 milliseconds; Nivarthi et al.: 1-6 milliseconds; Jobic et al.:
several nanoseconds) and moreover they all use AlPO4-5 crystals of different origin (which
may mean different crystal size distributions and/or presence of defects). A further discus-
sion on the discrepancies can be found in the paper of Jobic et al. and in the final section of
this chapter. At this point we can clearly say that current experimental observations are not
decisive as to whether the system shows normal or single-file behaviour.

Molecular simulations, enabling the researcher to follow the pathways of individual mol-
ecules directly, can provide complementary insights and are often more easy to interpret than
experiments. A straightforward way to study tracer diffusion in zeolites is the direct calcula-
tion of the mean square displacement from molecular dynamics simulations and investigation
of its time dependence (see Eq. 7.1). This, however, is still not without pittfalls. First, just
like with experimental methods, there is the matter of time regimes. When molecules are of
such size that they cannot pass each other very easily, they will expectedly show a single-file
type diffusion on short timescales, but on the longer timescales, infrequent passings will start
to dominate the diffusion mechanism and normal diffusion behaviour will prevail. This effect
can be totally missed if simulation times are not long enough. Also, when time regimes are
not separated well enough, it is possible to find ‘transitional’ behaviour, as has been shown
by Keffer et al. [107]. Unfortunately, these authors did not search for a transition to normal
diffusion in the long-time limit. Second, system size effects can play an important role. When
using periodic boundary conditions, too short a simulation box can level off the mean square
displacement curve at large correlation times [75]. (Clearly, for the pure single-file case,
when one particle has travelled all the way round, all other particles must have done so as
well, which is not possible when the center of mass of the system is kept fixed). In addition,
Kärger et al. [105] reported for very dense systems a deviation to ordinary diffusion when the
box was chosen too small, which is in fact rather unintelligible under the above remarks.

In this chapter, molecular dynamics simulations will be used to calculate mean square
displacements of methane molecules in AlPO4-5. Next, a simple hop-and-cross model will
be introduced that is able to reproduce the molecular dynamics results quite accurately. The
increased computational speed of the simplified model allows us to do an in-depth investi-
gation of system size effects and enables us to make a trustworthy classification of observed
regimes. Such a study with the system sizes that we will use would have been impossible
if one had had to do the full MD simulations. An additional advantage of the hop-and-cross
model is that the dependence of the diffusion behaviour on the two model parameters can be
studied easily.
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7.2 Molecular dynamics simulations

The zeolite system used in this study is the aluminophosphate AlPO4-5, which consists of a
neutral crystal lattice with one-dimensional, non-interconnected pores. Pore cross-sections
are nearly circular with minimum window size of ca. 7.3 Å. The unit cell is hexagonal with
dimensions a = 13:7707 Å and c = 8:3789 Å and contains 12 aluminium, 12 phosporous,
and 48 oxygen atoms [17, 127, 146]. In the simulations, a rectangular periodic box was used
with dimensions 2�2�60 unit cells. In this box, the x-axis runs parallel to the crystal a-axis,
the y-axis makes an angle of 30 degrees with the crystal b-axis and the z-axis runs parallel to
the c-axis of the crystal and thus parallel to the pore direction as well. Constructed this way,
the simulation box contains four pores of 60 unit cell lengths. The reason we choose for this
configuration, as opposed to simulating one pore of quadruple length, is twofold: first, this
way we are sure to include interactions between particles in different pores and second, each
simulation constitutes an average over four initial configurations (the rather small system with
constrained motion might be quite sensitive for initial conditions).

We assumed the zeolite lattice to be rigid and host-guest interactions were evaluated on a
grid with cell lengths of 0.2 Å, with cubic interpolation between the grid points. It has been
shown previously that this approximation does not influence the diffusion of small particles
very much [101], which was confirmed by tests of our own (deviations of energies from
simulations without using a grid were less than 1 promille). Since the walls of the pores are
formed by 6- and 12-rings of oxygens pointing inwards, and the interactions with the oxygen
atoms therefore dominate host-guest interactions, the zeolite was modelled by its oxygen sites
only (following the idea of Kiselev et al. [110]). The molecular dynamics simulations were
done with the GROMOS87 package [19], adapted to our own needs. Among the adaptations
are the incorporation of the grid evaluation of the host-guest interactions and a change of
the temperature scaling routine, which made it possible to scale the particle velocities in
the different pores independently. A timestep of 2 fs was used and temperature scaling was
carried out by partial rescaling of the velocities in order to get a smooth relaxation towards
the target temperature, with a relaxation time of 0.1 ps. This procedure is also known as
the Berendsen thermostat [18]. To prevent accumulation of center of mass movement, this
motion was removed once every timestep [120].

7.2.1 Argon adsorption

Before being able to carry out reliable simulations, potential parameters had to be optimized
for the system. Since there are good adsorption data for argon in AlPO4-5 available [79],
we decided to extract semi-empirical oxygen parameters from these data. The Lennard-
Jones parameters for argon we used were εAr = 0:96605 kJ/mol and σAr = 3:4050 Å, and
the Lorentz-Bertelot mixing rules were applied to determine interactions between particles of
different kinds. The Widom particle insertion method [188] was used to calculate the chem-
ical potential of argon in the pores of AlPO4-5 at T = 87 K at different loadings. The result
was then equated to the chemical potential of the gas outside the pore. Assuming ideal gas
behaviour outside the pore, the adsorption isotherm at the above temperature was constructed.
The result was compared with the experimental adsorption isotherm of argon in AlPO4-5 [79].
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Figure 7.1: Adsorption curves for argon in
AlPO4-5; experimental results (Hathaway et
al. [79], drawn line), MD results (this study,
squares), and GCMC results (Boutin et al.
[21], triangles).

The procedure was repeated for various zeolite oxygen parameters until the closest possible
match was obtained. This resulted in εO = 0:66516 kJ/mol and σO = 3:3687 Å. The corre-
spondence between simulation and experiment is shown in Fig. 7.1, together with the GCMC
results of Boutin et al. [21]. Our potential markedly better reproduces the jump in the amount
of adsorbed material in the transition region.

7.2.2 Methane diffusion

To model methane we used Lennard-Jones parameters εCH4 = 1:13908 kJ/mol and σCH4 =
3:8220 Å, and to model the zeolite, the oxygen parameters found above were used. Dynamics
runs were carried out in the NV T ensemble (with separate temperature scaling per pore) at a
temperature of 300 K. The pores were filled to a density of 0.7 molecules per unit cell.

To study the tracer diffusion of the methane molecules, a 50 ns production run was carried
out after equilibration and the mean square displacement of the particles was calculated for
correlation times up to 30 ns. The results are displayed in Fig. 7.2. The exponent α in the time
dependence of the mean square displacement (Eq. 7.1) clearly shows two different regimes.
The apparent deviation from the normal diffusion line at the highest correlation times is most
probably due to a lack of statistics. Not only does one have fewer measurements of the
displacements for such long correlation times, but also do these values scatter much more
than those of the shorter correlation times and therefore need more sampling to obtain similar
reliability.

In the short-time limit, where particle passings are so infrequent that they do not play a
major role in the diffusion, a single-file type diffusion might be expected (α = 0:5). Indeed
the exponent α is much less than 1, but the value of 0.625 that is actually found indicates
a profound deviation of strict single-file behaviour. Evidently, particle crossings, although
infrequent, influence the diffusion already at short correlation times. Such a transitional
behaviour has been reported before by Keffer et al. [107].

Note that with our potential parameters, passing is most probably allowed, which is in
contrast to what was proposed experimentally by Kukla et al. [115]. As to be expected when
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Figure 7.2: Mean square displacement curve
for methane in AlPO4-5 (molecular dynam-
ics simulation results). Guide lines are
drawn as ∝ t0:625 (dotted line) and ∝ t
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particles can pass each other, the long-time limit shows an approach to normal diffusion
α = 1. However, since it was claimed by Kärger et al. [105] that such a transition might
also be caused by the imposition of periodic boundary conditions, it is not yet clear at this
point if the transition shown in our graph is of physical origin or just an artefact of using
too small a box. To be sure that the picture is not troubled by system size effects, a closer
study was necessary. In order to be able to do so within reasonable computation times,
we developed a simplified one-dimensional hop-and-cross model to mimic the molecular
dynamics simulations, which will be described in the next section.

7.3 The hop-and-cross model

The dynamics to be described in this section takes place on a one-dimensional sequence of
sites, on which periodic boundaries are implied (the last site is connected with the first site).
In the initial stage, particles are distributed randomly over these sites, with the restriction that
no double occupancy is allowed. Then, in the dynamics stage, trial moves are carried out
sequentially for randomly chosen particles. For a given particle, there are three possibilities:
a turn to the left, a turn to the right, or a rest at its original location. For a turn to the left or
to the right there are again two situations: the neighbouring site is either empty or occupied.
In case it is empty the change of the particle to move to this site is given by the probability
phop. If on the other hand the neighbouring site is occupied, the probability of the particle
to move to that site is given by pcross, which at the same time involves the movement of the
neighbouring particle to the site the original particle is coming from (i.e., both particles are
interchanged). The probability for a particle to remain at its position thus depends on the
occupancies of its neighbouring sites and is given by the complement of the changes to go
either to the left or to the right. When the number of trial moves has become equal to the
number of particles in the system, we say that one timestep has passed. The timestep used in
the hop-and-cross model can be substantially larger than the one in the molecular dynamics
simulation. In the latter case, the timestep should be so small as to ensure a stable numerical
solution to the equations of motion, whereas in the hop-and-cross model the timestep can be
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Figure 7.3: Mean square displacement
curves showing agreement between hop-
and-cross model (straight line) and molecu-
lar dynamics results (dashed line).

of the order of time in which a particle would travel from one site to another. In the AlPO4-5
unit cell, there are two 12-rings and two 6-rings of oxygens, and adsorption takes place on
the latter ones. Thus one crystallographic unit cell in the molecular dynamics simulation box
corresponds to two sites in the hop-and-cross model.

7.3.1 Reproduction of MD results

To start the investigation, we first tried to mimic the MD simulation as closely as possible.
Therefore, each pore of the simulation box was divided into 120 sites (there were 60 unit
cells in the z-direction), with the dividing planes at the potential energy maxima. Hopping
probabilities were calculated by counting the number of times that a particle had moved from
one site to an empty neighbouring site between two time frames. The time interval between
two frames was 0.2 ps, so this also sets the timestep in the hopping model to 0.2 ps. On the
one hand, this proved to be large enough to get a reasonable hopping probability and on the
other hand short enough to prevent particles from moving through more than one site between
two successive time frames. For the current loading of 0.7 molecules per unit cell and at the
chosen temperature of 300 K, a hopping probability phop = 0:125 was found.

The crossing probability proved to be more difficult to calculate from the MD simulations,
since a molecule that moves in the direction of an occupied site, sometimes resides together
with the neighbouring particle in the same site for a while which leads to ambiguities in
the counting procedure and on the other hand, actual crossings often are followed by rapid
recrossings, which leads to an overestimation of the effective crossing probability. This is not
easily accounted for, since the timescale at which recrossings settle down is not seperated well
from the timescale of hopping to free sites. For these reasons we decided to keep pcross as a yet
unknown parameter that could be determined later by fitting the mean square displacement
curve from the one-dimensional model to that of the MD simulation.

To mimic the molecular dynamics system as closely as possible, we set up our one-
dimensional system as 120 sites with 42 particles (0.7 molecules per unit cell corresponds
to 0.35 particles per site). Periodic boundary conditions were applied to the system. Ini-
tially, particles were distributed randomly over the sites (with the restriction of no double
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Figure 7.4: Study of system size effects for
strict single-file system (pcross = 0). 10 100 1000 10000 100000
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occupancies) and subsequently, equilibration runs were carried out for 1,000,000 timesteps
of 0.2 ps. Then production runs were carried out for another 24,000,000 timesteps (4.8 µs
simulation time). These extensive run times proved to be necessary to obtain good statistics.
Apparently, the one-dimensional calculations are more sensitive to statistical error than the
MD calculations in this respect.

From the production runs, mean square displacements were calculated up to correlation
times of 40 ns. The mean square displacements were calculated for particle trajectories that
were corrected for center of mass motion (at all times, the center of mass motion was sub-
tracted from the trajectories). The closest approximation of the MD results was reached with
the crossing probability pcross equal to 0.0008. The good correspondence is shown in Fig.
7.3.

With phop and pcross both being determined accurately, the model is complete and has
been shown able to reproduce the MD results. Now with the new model we can set out to
study system size effects.

7.3.2 System size effects

To study the effect of the size of the periodic box, we did several model simulations with
various box sizes. We started out this study by forbidding particle crossings (pcross = 0,
phop = 0:125). The reason for this is that this should yield strict single-file motion, for which
the theoretical result is known (α = 0:5). The results are plotted in Fig. 7.4, where the box
size is given in units of 120 sites. As can be seen, for the original box length, the results
already start to deviate at ca. 1000 ps correlation time. This is due to the fact that there is a
limitation to the distance that particles can travel in the periodic box, since sooner or later they
will bumb into their colleagues travelling in the opposite direction. This fact was recognized
earlier by Hahn and Kärger [75]. The turnover displacements in our plot are in agreement
with the analytical estimate for this quantity as presented by them. From the results in Fig.
7.4, it can be learned that, if we want to reveal the real nature of the crossover we found
previously at a correlation time of about 3 ns, we have to go up to box sizes of at least 8 times
120 sites (corresponding to more than 400 nm).
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Figure 7.5: Range of diffusive behaviour
from single-file to normal diffusion for dif-
ferent crossing probabilities. nsize = 8.
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Figure 7.6: Final MC result for short and
long-time diffusive regimes. pcross = 0:0008,
nsize = 8. The dashed-dotted guidelines are
drawn as ∝ t0:64 and ∝ t and the others show
the extrapolated experimental results of Jo-
bic et al. (dotted) and Nivarthi et al. (long
dashed).

7.3.3 Large box results

To study the sensitivity of the system’s behaviour to the crossover probability, we performed
several model simulations with a box size of 8 � 120 sites, for different values of pcross. The
results can be seen in Fig. 7.5. The whole range of nearly single-file up to normal diffusion
is covered in two to three orders of magnitude of the crossing probability. Notice that even
the smallest value of pcross largely influences the mean square displacement as a function of
time, and that already a phop=pcross ratio as small as 1/10 produces normal diffusion over the
whole time domain, down to the Newtonian timescale.

Finally, the mean square displacement is plotted for pcross = 0:0008 (the one which most
closely resembled the MD simulation), but now with the large box size (Fig. 7.6). It is clear
that a crossover can still be recognized, though less pronounced than in the original small-size
simulation. Since the crossover takes places at a correlation time long before the system size
effects the results, it is thus shown to be a real physical crossover.

7.4 Discussion

In this chapter, both molecular dynamics simulations and a simple Monte Carlo model have
been used to investigate unidirectional diffusion of methane in the zeolite AlPO4-5. First,
molecular dynamics simulations on a rather small system were used to derive the time depen-
dence of the mean square displacement. Next, a simple hop-and-cross model was introduced
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to mimic the molecular dynamics simulations. After the tuning of a single parameter (the
crossing probability), the results were reproduced very satisfactorily.

With the increased computational efficiency of the simplified model, we were able to
carry out a thorough study of system size effects. These effects have shown to be of great
importance and hence very large system sizes were needed to eliminate the influence of peri-
odic boundaries on the longer timescales. Since these large sizes are not easily accessible by
normal molecular dynamics simulations, the simplified model proved to be of great use.

Also after elimination of system size effects, the motion of the guest molecules is not
strictly single-file in nature. Though infrequent, crossing events may occur, leading to a nor-
mal diffusive regime on large timescales. On short timescales, an intermediate behaviour is
found, where the mean square displacement is proportional to t 0:64, while at a time of about
7 ns, a crossover to normal diffusion is found. These findings are in contrast with the ex-
perimental observation of single-file diffusion reported by Kukla et al. [115] in 1996, using
Pulsed Field Gradient NMR, although the timescale of their experiments was far beyond the
crossover time mentioned above. Their conclusions on methane in AlPO4-5, however, are
somewhat questionable. For CF4 in AlPO4-5, they observe a slowing down of the mean
square displacement at large timescales which they attribute to blockages of the zeolite chan-
nels caused by impurities and imperfections. This effect sets a maximum length scale over
which diffusion can trustfully be studied. In the case of methane however, the molecules have
travelled a distance much longer than this length at all times accessible to the experiment. It
is very well possible that the corresponding slowing down of the mean square displacement
by the channel blockages has hidden the real character of the diffusion motion.

Two experimental studies confirming our findings have appeared in the literature: one,
using Fourier transform PFG-NMR, by Nivarthi et al. [138] (D = 2:9�10�9 m2/s), and one
by Jobic et al. [98] (D = 1:6� 10�9 m2/s), using quasi-elastic neutron scattering (QENS).
Both studies report normal diffusion on their accessible timescales, which are larger than ours,
and are thus in agreement with our findings. The experimental mean square displacements,
extrapolated to shorter timescales, along with our final results are plotted in Fig. 7.6. It can
be seen that our mean square displacement has almost reached the linear regime, and that the
diffusion coefficient we find (D = 7:4�10�9 m2/s) is somewhat larger than the experimental
ones. There is one very obvious way to repair this discrepancy, i.e., by changing the crossing
probability pcross. Fig. 7.5 shows that the slightest change in this value can have a large effect
on the diffusion curve. There are several reasons one could think of why pcross might be
slightly overestimated. First it is possible that our fit in Fig. 7.3 could be ameliorated, and
second the model system in the MD simulation could be improved, for instance the diameter
σCH4 of the guest molecules could be enlarged, a potential other than a Lennard-Jones type
could be used, or host lattice vibrations could be taken into account.
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8 Transport diffusion of argon in
AlPO4-5

Transport diffusion of argon in the unidirectional channels of the molecular sieve
AlPO4-5 has been studied using molecular dynamics simulations. Using the
Green-Kubo formalism, this nonequilibrium property is, for the first time, ex-
tracted from just one equilibrium simulation. Apart from the computational ad-
vantages above nonequilibrium simulations, the new method also provides a way
to check the validity of the assumption of linear response, which is at the basis
of both methods. The transport diffusion coefficient for argon at 87 K and half
the maximum loading is found to be equal to Dt = (1:4�0:1)�10�5 cm2/s, of
which approximately 20 % can be attributed to correlated, collective motion.�

8.1 Introduction

Unrestricted molecular transport in one-, two- or three-dimensional systems usually proceeds
by ordinary diffusion. This is at the basis of the proportionality of the observation time and
the mean square displacement of a tagged particle (tracer diffusion). The transport mech-
anism can change drastically, however, when molecules reside in restricted geometries. If
for example particles are forced to move along one-dimensional channels such that they are
restricted to maintain their sequential order, i.e., such that they are unable to pass each other,
their mean square displacement becomes proportional to the square root of the observation
time [54, 104, 155]. The underlying mechanism is called single-file diffusion.

The concept of single-file diffusion is a well-known phenomenon in ion transport through
biological membranes, being introduced already in the 1950’s [84]. In many cases, trans-
membrane ion diffusion takes place via pore-like channels, formed by large biomolecules, of
which Gramicidin A is a classic example. In the Gramicidin A channel, the large discrepancy
between the flux ratios of protons and other ions can be explained by the single-file nature
of the transport of water molecules and Na+ and K+ ions, whereas the transport of protons
occurs via a ‘proton-wire’ formed by the file of water molecules [57, 148].

� The work described in this chapter previously appeared in J. Chem. Phys. 113(16), 6875 (2000). [86]
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Figure 8.1: Pore structure of an AlPO4-5
channel, showing only the oxygen atoms.
The 12-rings of oxygen are in white and the
alternating 6-rings in greyscale. For clarity,
the van der Waals radii of the atoms have
been reduced.

After its recognition in biophysics, anomalous diffusion in unidirectional channels was
reported subsequently in a large variety of other systems, including the surface diffusion
of chemisorbed species on crystal surfaces [67], ion transport along the chains of polymer
electrolytes [47], molecular transport in zeolites [71, 74, 115] and most recently the diffu-
sion of colloids in one-dimensional channels of micrometer scale [184]. Over recent years,
zeolitic systems have become more and more recognized as ideal model systems to study
the above-mentioned anomalous diffusion effects. They have well-defined pore structures
and can nowadays almost be tailor-made with respect to pore sizes and network topologies.
Besides their being suitable model systems, they also have huge commercial importance as
environmentally friendly catalysts, ion-exchangers and molecular sieves.

The study of this work concerns diffusion of guest molecules in AlPO4-5. This particular
zeolite consists of a neutral crystal lattice with one-dimensional, non-interconnected pores.
The pore cross sections, formed by 12-rings of oxygen, are nearly circular, with a minimum
window size of approximately 7.3 Å. A sketch of the oxygen positions in the system can be
seen in Fig. 8.1. The 12-rings are clearly directed inwards and constitute the main geometry
of the pore. More outwards, alternating 6-rings can be found. For clarity, the van der Waals
radii of the atoms have been reduced in the picture. In Chapter 7 [168] we discussed the tracer
diffusion of methane in this zeolite. Experimentally there has been a lot of debate whether
methane would display single-file or normal diffusive behavior in the channels of AlPO4-
5. Kukla and co-workers performed pulsed field gradient (PFG)-nuclear magnetic resonance
(NMR) measurements [74, 115] and claimed single-file diffusion, which was contradicted
later by experiments of Nivarthi et al. [138] (Fourier transform PFG-NMR) and Jobic et
al. [98] [quasielastic neutron scattering (QENS)]. In our study, we were able to relate these
discrepancies to the difference in timescales probed by the experiments. We showed that the
long-time limit of methane transport in this system should be diffusive and we succeeded
in reproducing an approximate self-diffusion constant in close agreement with experiment.
In this chapter, we will focus on argon diffusion in the same system. Being substantially
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smaller (Lennard-Jones σ-parameter of 3.4050 Å vs. 3.8220 for methane), this molecule will
not display single-file behavior. To further rule out the possibility of anomalous effects, we
will make sure throughout this study to extend our correlation functions up to the nanosecond
scale, which showed to be beyond the diffusive limit for methane as well (see Chapter 7).

Notwithstanding the relevance of the aforementioned experimental techniques, most prac-
tical applications of molecular transport in zeolites occur under nonequilibrium conditions,
in particular situations in which a macroscopic concentration or chemical potential gradi-
ent is present. The diffusion coefficient that accounts for the collective motion of particles
under the influence of a concentration gradient is called the transport diffusion coefficient
Dt (as opposed to the self or tracer diffusion coefficient Ds). Nowadays, there is a whole
class of macroscopic experiments available that probe the transport diffusivity, such as up-
take rate measurements [150], permeation rate measurements [80], and frequency response
analyses [181]. Just very recently, two microscopic techniques have become available that
measure intracrystalline transport diffusion [99, 156], but they have not yet been applied to
unidimensional pore systems.

Up till now, only few simulation techniques have been developed for diffusion under
nonequilibrium conditions. Müller-Plathe et al. [135] used nonequilibrium simulations to
study the transport of small gas molecules through an amorphous polymer matrix. The first
application to diffusion in zeolites was shown by Maginn et al. [123] in the same year 1993.
They used two nonequilibrium molecular dynamics methods to study the transport diffusion
of methane in the two-dimensional silicalite network. The gradient relaxation molecular dy-
namics (GRMD) method more or less mimics a macroscopic situation: a (periodic) concen-
tration profile is set up in the simulation box and subsequently let to relax. Profiles resulting
from the relaxation of different initial configurations are being fit to the general solution of
Fick’s law to obtain transport diffusivities. For obtaining reasonable accuracy, this method is
computationally very demanding. Furthermore, the method relies on the assumption that the
system is in the linear response regime. A check thereof is in principle possible by repeating
the procedure for different concentration gradients and checking whether the diffusion coef-
ficient is not influenced by that, but this would increase the computational demands by yet
another order of magnitude. Therefore an alternative approach, called color field nonequilib-
rium molecular dynamics (NEMD), was presented as well. In this method, a particle flux is
generated by giving each particle a ‘color’ charge and then applying a corresponding color
field. This color field thus replaces the chemical potential gradient present in a concentration
profile as the driving force for diffusion. Although this method is much easier to use than the
GRMD, it still requires several nonequilibrium simulations.

Note that with the term ‘nonequilibrium’, we refer to systems that are thermodynamically
not in equilibrium. The above simulation techniques all try to mimic an experimental tech-
nique, either a relaxation experiment (where an initial chemical potential gradient is allowed
to relax), or a steady-state experiment (where the gradient is kept intact by the application of
an external force). Both methods probe the same property, i.e., the transport diffusion coef-
ficient. This in contrast to the self-diffusion coefficient, which is typically evaluated under
thermodynamic equilibrium (experimentally for instance with NMR measurements or in sim-
ulations by calculating the mean square displacement of tracer particles in a system without
gradients).
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In this chapter, we present a method to extract the nonequilibrium transport diffusivity
from the fluctuations in an equilibrium simulation. The method is based on Onsager’s regres-
sion hypothesis, and will now for the first time be applied to the study of collective diffusion
in zeolites. (A similar application of Onsager’s hypothesis was used in Chapters 2 and 5
to calculate the kinetic coefficient of atomic crystal growth.) The benefit on computational
grounds is twofold: there is no more need to maintain a rather difficult nonequilibrium situa-
tion and there is essentially no limit in the occupancies one can manage. In the next section
we will present the theories we use and in subsequent sections we will present our results for
the macroscopic transport diffusivity of argon in AlPO4-5 and elucidate two distinct contri-
butions, i.e., self motion and collective motion.

8.2 Theory

The diffusion of particles under the influence of a spatial density variation is adequately
described by Fick’s second law:

∂ρ(r; t)
∂t

= Dt∇2ρ(r; t); (8.1)

where ρ(r; t) denotes the time-varying density profile and Dt the transport diffusion coeffi-
cient. In general, this relation is used for systems subjected to a macroscopic density gradient,
but it also holds for an equilibrium situation where ρ(r; t) accounts for fluctuations around
the equilibrium density profile ρeq(r). In fact, as Onsager stated already in the 1930’s, in
a system close to equilibrium one cannot distinguish between spontaneous fluctuations and
deviations from equilibrium that are externally prepared [36]. Thus, according to Onsager’s
regression hypothesis, microscopic equilibrium fluctuations on average decay according to
their corresponding macroscopic law. In the present case, the macroscopic law is given by
Eq. (8.1) and can be solved in Fourier space to yield

ρ̂ = ρ̂0e�Dt k2t : (8.2)

In combination with Onsager’s statement, this leads to the following expression for density
fluctuation correlations at equilibrium:

hρ̂(k; t)ρ̂�(k;0)i= hρ̂(k;0)ρ̂�(k;0)ie�D(k)k2t : (8.3)

Here ρ̂(k; t) stands for a Fourier component of a density fluctuation with respect to the equi-
librium density

ρ̂(k; t) =
Z

dr
�

ρ(r; t)�ρeq(r)
	

eik�r; (8.4)

where

ρ(r; t) = ∑
n

δ(r� rn(t)) ; (8.5)
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and ρeq(r) is the equilibrium density at position r; rn(t) is the position of particle n at time t.
For future use (Eq. 8.8) we notice

∂ρ̂(k; t)
∂t

=
∂
∂t ∑

n
eik�rn(t) = i∑

n
k �vn(t)e

ik�rn(t); (8.6)

where vn(t) is the velocity of particle n at time t.
Note that in Eq. (8.3) we introduced a k-dependence of the diffusion coefficient, since

Onsager’s hypothesis strictly speaking only applies in the linear response regime, i.e., for not
too rapidly varying density profiles (small k-vectors).

We are now in the position to elaborate Eq. (8.3) somewhat further [24]. By taking the
time derivative of the left and right hand sides we arrive at

� 1
k2

∂
∂t
hρ̂(k; t)ρ̂�(k;0)i= hρ̂(k;0)ρ̂�(k;0)iD(k)e�D(k)k2t : (8.7)

Writing the left hand side as the integral of its derivative we obtain:

� 1
k2

∂
∂t
hρ̂(k; t)ρ̂�(k;0)i = �

tZ

0

dτ
1
k2

∂2

∂τ2 hρ̂(k;τ)ρ̂�(k;0)i

=

tZ

0

dτ
1
k2

�
∂ρ̂(k;τ)

∂τ
∂ρ̂�(k;0)

∂τ

�
; (8.8)

where in the final step we have made use of the time symmetry of equilibrium correlation
functions. If we now substitute Eq. (8.6), we arrive at a Green-Kubo expression which relates
the diffusion coefficient to velocity correlations (where the double sum runs over all pairs of
particles):

D(k)hρ̂(k;0)ρ̂�(k;0)ie�D(k)k2t =
tZ

0

dτ

*
1
k2 ∑

l;m

(k �vl(τ))(k �vm(0))eik�(rl(τ)�rm(0))

+
(8.9)

Since we are interested in diffusion on macroscopic length and time scales, we can sim-
plify our expression by taking the appropriate limits. Taking the limit of zero wave vector
(corresponding to density fluctuations with large wavelengths), will put the exponent to unity.
The macroscopic timescale is reflected by subsequently taking the limit of t ! ∞. Note that
the order in which these limits are taken is crucial. Our final simplification comes from the
fact that in the present study, we present an application to diffusion in the unidirectional chan-
nels of AlPO4-5, i.e., we are only interested in k-vectors parallel to the z-axis. This leaves us
with only one term of all inner products:

D(kz)
1
N
hρ̂(kz;0)ρ̂�(kz;0)i=

∞Z

0

dτ

*
∑
l;m

1
N

vlz(τ)vmz(0)eikz(zl(τ)�zm(0))

+
: (8.10)
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From now on we will stick to this one-dimensional representation. In the limit of k ! 0, the
fluctuations become of macroscopic size and the limiting value represents the macroscopic
transport diffusivity Dt .

The last factor on the left-hand side of Eq. (8.10) divided by the number of particles in
the system, N, equals the structure factor S(k):

S(k) =
1
N
hρ̂(k;0)ρ̂�(k;0)i : (8.11)

From the thermodynamic compressibility equation, it follows [78] that the zero wave vector
limit of the structure factor is given by

lim
k!0

S(k) = ρkBTκT ; (8.12)

with κT the isothermal compressibility:

κT = � 1
V

�
∂V
∂P

�
T
=

1
ρ

�
∂ρ
∂P

�
T
=

1
ρ2

�
∂ρ
∂µ

�
T

=
1

ρ2kBT

�
∂ρ

∂ ln f

�
T
=

1
ρkBT

�
∂ lnρ
∂ ln f

�
T
: (8.13)

The right-hand side of Eq. (8.10) is usually called the corrected diffusivity, D0, which can
be split into an autocorrelation part and a part containing cross-correlations. The autocorrela-
tion term represents the self-diffusion of the particles and taking zero wave vector we arrive
at the usual Green-Kubo relation for the macroscopic self-diffusion constant:

Ds =
1
N ∑

l

∞Z

0

dτ hvlz(τ)vlz(0)i (8.14)

This, together with Eqs. (8.10) – (8.13), provides us with a relation between the macroscopic
self and transport diffusion coefficients:

Dt =

�
∂ ln f
∂ lnρ

�
T

�
Ds + lim

k!0

∞Z

0

dτ

*
∑
l 6=m

1
N

vlz(τ)vmz(0)eik(zl(τ)�zm(0))

+�
: (8.15)

The summation over the cross terms in Eq. (8.15) represents the way in which the motion
of a single particle is influenced by the initial motion of its surrounding particles. At very low
particle densities, those cross-correlations will be negligible and the corrected diffusivity will
equal the self-diffusion coefficient. In that limit, we arrive at the familiar Darken equation:

Dt
�= Ds

�
∂ ln f
∂ lnρ

�
T
: (8.16)

All relations have been derived for fluctuations in the equilibrium density distribution.
Eq. (8.10) thus provides us with a tool to calculate the product D(k)S(k) for different wave
vectors from one equilibrium simulation. Note the big advantage over nonequilibrium sim-
ulations, where each different k-vector would stand for a separate simulation. Furthermore,
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the structure factor S(k) can be directly determined using its definition in Eq. (8.11). The
combination gives us D(k) which for k ! 0 will equal the macroscopic transport diffusion
constant. By comparison with the self-diffusion coefficient in Eq. (8.14), the contribution of
correlated motions can be determined and the validity of the Darken equation can be checked.
Note that we cannot simply put k equal to zero in Eq. (8.10), since then the right hand side
will be zero because of conservation of momentum.

8.3 Simulations

Molecular dynamics simulations were performed in the canonical ensemble on a system of
argon adsorbed in AlPO4-5. All simulations were done at a temperature of 87 K and at a
loading of 3 molecules per unit cell, which roughly corresponds to half of the maximum
loading. This loading was chosen such that interactions between guest molecules on the
one hand are large enough to lead to collective motions and on the other hand are small
enough to allow for substantial displacements. The AlPO4-5 unit cell is hexagonal with lat-
tice constants a = 13:7707 Å and c = 8:3789 Å [17, 127, 146]. The lattice was assumed to
be rigid and host-guest interactions were restricted to interactions between the guest and the
oxygen atoms of the lattice, which has been shown to be sufficiently accurate to calculate
the diffusion of small spherical particles in this system [110]. The Lennard-Jones interac-
tion parameters for argon we used were εAr = 0:96605 kJ/mol and σAr = 3:4050 Å, and for
oxygen εO = 0:66516 kJ/mol and σO = 3:3687 Å. The latter were determined by fitting the
argon adsorption isotherm to experimental values in the way as described in Chapter 7 [168].
Throughout the simulations, we used a rectangular simulation box consisting of 2� 2� 60
unit cells, thus containing four separate channels, directed along the z-axis. Potentials were
cut off at 1.15 nm, so interactions between atoms in different channels were neglected and the
four channels can be regarded as separate systems. The simulations were performed using
an adapted version of the GROMOS simulation package [70]. Thermostatting is achieved by
weak coupling to an external bath [18], for which we used a relaxation time of 0.1 ps. We
adapted the thermostat so as to treat the individual pores independently, thus preventing non-
interacting particles in different pores from influencing each other via the thermostat. This
also included a routine to remove the center of mass movement in each pore at each timestep.
On top of this, an extra routine was added to perform the calculation of the correlation term
in Eq. (8.10) on-the-fly. Rewriting this equation in a summation of a real and an imaginary
part gives:

D(k)S(k) =
1
N

∞Z

0

dt hC(t)+ iS(t)i ; (8.17)

with

C(k; t) = f∑
i

viz(t)cos(kzi(t))gf∑
j

v jz(0)cos(kz j(0))g

+ f∑
i

viz(t)sin(kzi(t))gf∑
j

v jz(0)sin(kz j(0))g
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Figure 8.2: Structure factor as a function of
wavenumber for argon in AlPO4-5.
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Figure 8.3: Low k-region of the structure fac-
tor of Fig. 8.2. The circles denote the results
from the simulations and the solid line shows
a quadratic fit of the points in the region be-
tween the two major peaks.

S(k; t) = f∑
i

viz(t)sin(kzi(t))gf∑
j

v jz(0)cos(kz j(0))g

� f∑
i

viz(t)cos(kzi(t))gf∑
j

v jz(0)sin(kz j(0))g:

Thus, for each time-frame only two summations were needed for every wave vector k that
was evaluated.

8.4 Results

First, the structure factor was calculated with the aid of Eq. (8.11) from a 500 ps simulation
over a wide range of k-values. The result is given in Fig. 8.2. A major peak with several
smaller harmonics can be seen at a wavenumber of 15.0 nm�1, corresponding to a wavelength
of λ = 0:419 nm which is just half of the corresponding unit cell axis. It can be surmized
that the argon atoms preferentially occupy two rings of adsorption sites per unit cell, which
was confirmed by density plots we calculated from the output of our simulations. These
rings are located near the 6-rings of oxygen atoms in the AlPO4-5 structure (see Fig. 8.1).
This is consistent with the view of diffusion that occurs through atoms hopping from one
site to another [104]. In Fig. 8.3 the interval between zero and the first peak of the structure
factor is highlighted. These data were fitted by a quadratic function (also indicated in the
figure), which yielded an extrapolated value for S(k)k!0 of 0.75. This value should be equal
to the inverse of the Darken factor (∂ ln f=∂ lnρ)T at this particular loading. This information
can directly be extracted from the adsorption isotherm. In Fig. 8.4 the adsorption isotherm
(see also Chapter 7) is presented on a log-log scale. The tangent corresponds to a structure
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Figure 8.4: The adsorption curve (Fig. 7.1)
presented on a log-log scale. The Darken
factor is given by the tangent to this curve
at a loading of 3 molecules per unit cell. 1 10
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factor of 0.70, given by a four-point numerical differentiation. This is in close agreement
with the previously determined result. As is clear from both approaches, the determination
of the Darken factor via the first method is much more accurate, especially at this particular
loading, where the adsorption isotherm displays its steep rise. However, the calculation of
the structure factor over the whole k-range has not been a trivial task either. In order to get
accurate results for small values of k, which is equivalent to probing density fluctuations of
large wavelengths, the randomization of initial particle positions is extremely important. It
appears that when one constructs initial configurations by putting exactly three particles in
every unit cell and randomizes their positions within the unit cell, the structure factor drops
to zero at small k. Only when distributing the total of 180 particles randomly over the whole
pore of 60 unit cell lengths, does one find the right results at small values of k.

For the evaluation of D(k)S(k) a 5 ns simulation was performed to calculate the four
terms in Eq. (8.17) for twelve wave numbers k. As the correlation functions are the Fourier
transforms of density fluctuations and the latter are real and even functions, the imaginary
part of these functions should be zero. Deviations of the imaginary part from zero thus give
an estimate of the accuracy of the real part. The product D(k)S(k) for each wavenumber was
obtained by integration of the real part hC(t)i in Eq. (8.17).

As an example, the integral of the correlation function at k = 0:50 nm�1 as a function of
its upper integration limit is shown in Fig. 8.5. The dashed lines give the approximate error
margins as obtained by integration of the imaginary part. From this graph we determine a
value of D(k)S(k) = (0:95�0:10)�10�5 cm2/s for the appropriate wave vector.

The same procedure has been repeated for the whole range of wave numbers, and the
graph of D(k)S(k) versus k is shown in Fig. 8.6. With the previously obtained quadratic fit of
S(k) in the relevant region we are now able to calculate D(k), the result of which is presented
in Fig. 8.7. Clearly, D(k) reaches a plateau value for k approaching zero, which indicates that
for those values of k we have reached the macroscopic limit (where D should be independent
of the wave vector). The limiting value for k! 0 gives us the macroscopic transport diffusion
coefficient. Thus, for the transport diffusion of argon in AlPO4-5 at a loading of 3 molecules
per unit cell and a temperature of 87 K, we arrive at Dt = (1:4�0:1)�10�5 cm2/s.
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Figure 8.5: D(k)S(k) vs. integration time for
k = 0:50 nm�1.

0.0 1.0 2.0 3.0 4.0
k [nm

−1
]

0.0

0.2

0.4

0.6

0.8

1.0

D
(k

)S
(k

) 
[1

0−5
 c

m
2 /s

]
Figure 8.6: D(k)S(k) as function of wave
vector k.

Note that D(k) only starts to reach its plateau for wave numbers k < 0:4 nm�1 corre-
sponding to wavelengths larger than approximately 16 nm. This value sets a lower limit to
the length of the simulation box to be used in both equilibrium and nonequilibrium simu-
lations. If the concentration gradient set up in nonequilibrium simulations is substantially
larger than the inverse of this wavelength, the results will become unreliable. It is part of the
elegance of the present method that the check whether the linear response regime has been
reached or not comes straight out of the simulation.

Finally, we will spend some words on the contributions of self vs. collective motions in
the transport process. From the same (equilibrium) simulation that we used to determine
the transport diffusion coefficient, we also determined the self-diffusion coefficient. To this
end we evaluated the velocity autocorrelation function (VACF) from Eq. (8.14) over the first
0.5 ns after equilibration. The result is shown in Fig. 8.8. Integration of this VACF yields a
self-diffusion coefficient of Ds = 0:784� 10�5 cm2/s. When neglecting cross-correlations,
the corresponding transport diffusion coefficient would be given by the Darken equation [Eq.
(8.16)]. This leads to a value of Dt = 1:12�10�5 cm2/s. Comparing this with the result we
got from the complete calculation, we see that the transport diffusion coefficient in the Darken
approximation differs by 20 % from the actual value. Thus, at a loading of 3 molecules per
unit cell, collective motions account for about 20 % of the total transport of argon in the
AlPO4-5 channels at this loading, and are therefore not negligible. At present, experimental
methods are not accurate enough to probe this deviation from the Darken approximation. For
example in table 12.2 of the book by Kärger and Ruthven [106], the self-diffusion coefficient
Ds from NMR and neutron scattering experiments and the corrected diffusion coefficient
D0 ( = DtS(0) in our notation) from the other techniques, are given in one and the same
column. The scattering in the data (due to differences in loading, temperature, samples, and
experimental techniques) is too large to find the subtle difference we measure.
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Figure 8.7: The k-dependent diffusion coef-
ficient D(k) as a function of wavenumber k.
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Figure 8.8: The velocity autocorrelation
function for argon in AlPO4-5 at a loading
of 3 molecules per unit cell (T = 87 K).

8.5 Conclusions

In this chapter, we have introduced a method by which essentially nonequilibrium transport
properties can be evaluated from equilibrium molecular dynamics simulations. Results were
presented for the transport diffusion of argon in the unidirectional pores of AlPO4-5. The
simulations were done at a loading of 3 molecules per unit cell (approximately half the max-
imum loading) and a temperature of 87 K. For density fluctuations with wavelengths larger
than 16 nm, the linear response regime was reached and the transport diffusion coefficient
for this system was found to be Dt = (1:4� 0:1)� 10�5 cm2/s. It was shown that about 20
percent of this value can be attributed to correlated, collective motion. The increased contri-
bution of group movement at higher loading is reflected in an underestimation of the transport
diffusion coefficient when the Darken approximation would have been directly applied to the
measured self-diffusion coefficient at the same loading.
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9 The Einstein equation for
transport diffusion

In this chapter, we investigate various methods to calculate corrected collec-
tive diffusion coefficients. We interpret the meaning of the center-of-mass co-
ordinate that occurs in the usual Einstein expression for the corrected diffusivity
and show that it should only apply to displacements of particles in the control
volume. The use of unfolded particle trajectories in the expression is only valid
for systems that are periodic and if the whole box is taken as the control volume.
We derive a wavevector-dependent Einstein expression, equivalent to the Green-
Kubo form we derived in Chapter 8. We show that the box size dependence of
the values derived from the usual Einstein equation is reproduced (at least for
small k-values) by our expression applied to a large box. Finally, we discuss the
order in which the limits of k ! 0 and t ! ∞ should be taken to arrive at the
thermodynamic limit.�

9.1 Introduction

Over the past 10-15 years, many simulation studies have appeared in the literature that cal-
culate the transport of guest molecules through zeolites. Almost all of them, however, ex-
clusively deal with the self or tracer diffusivity. Via the well-known Einstein equation, this
quantity can be calculated from a single particle correlation function and is thus readily cal-
culated in, e.g., molecular dynamics (MD) simulations, with excellent statistical accuracy. In
many cases, calculations of the self-diffusion coefficient have proven able to reproduce mea-
surements from microscopic experiments such as Pulsed Field Gradient Nuclear Magnetic
Resonance (PFG-NMR) and Quasi-Elastic Neutron Scattering (QENS).

For most practical purposes, however, it is not the self-diffusivity that is of main interest
but the transport diffusivity. The transport diffusion coefficient is the property that accounts
for the collective motion of particles under the influence of a macroscopic gradient. Being a
collective property, this is much more difficult to obtain reliably from atomistic simulations.

� The work described in this chapter has been submitted to J. Chem. Phys. [172]
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The first attempts to calculate transport diffusion in zeolites (in this case methane in sili-
calite) were reported by Maginn et al. [123] in 1993. They used two different nonequilibrium
techniques: Gradient Relaxation Molecular Dynamics (GRMD), where an initial nonequilib-
rium density profile is let to relax, and Colour Field Molecular Dynamics, where the particles
are assigned a virtual colour charge and are then subjected to a colour field gradient. Both
methods are computationally very demanding and in both cases it is difficult to apply gradi-
ents that are, on the one hand, small enough to ensure the system is in the linear response
regime and, on the other hand, large enough to be able to distinguish them from spontaneous
fluctuations in the density. The problems that arise in the construction of initial configura-
tions for the GRMD simulations, where two boxes with different average densities are put
together, are comparable to the problems we encountered in constructing initial configura-
tions for our crystal-melt simulations (see, e.g., Chapter 3). In the light of that experience,
the problems Maginn et al. experienced in getting reliable results out of the GRMD method
might be largely due to their relatively small system sizes.

Maginn et al. also tried an equilibrium method, in which the transport coefficient was
calculated from the flux-flux autocorrelation function:

Dt =

�
∂ ln f
∂ lnc

�
T

1
3N

∞Z

0

dthj(t) � j(0)i; (9.1)

with the microscopic flux j defined as

j =
N

∑
l=1

vl; (9.2)

in which f is the fugacity of the guest molecules and c their concentration. This equation
results from linear response theory and already appeared early in the literature (see, e.g.,
Ref. [53, 76]). It has been used for long in the theory of two-dimensional surface diffusion
and it is equivalent to our Eq. 8.9 in the limit of k ! 0. Maginn et al. did not find the
equation particularly useful since the flux-flux autocorrelation function has a long-time tail
that oscillates around zero (in contrast to the single-particle velocity autocorrelation function,
where this Green-Kubo formalism is routinely used to calculate self-diffusion coefficients).
Today, with the availability of much more computing power, transport diffusion in zeolites
is almost exclusively calculated by equilibrium simulations, since they lack the problems
mentioned earlier.

As an alternative to the Green-Kubo expression, the transport diffusivity can be calculated
via the equivalent Einstein expression:

Dt =
1

6N

�
∂ ln f
∂ lnc

�
T

d
dt

* 
N

∑
l=1

(rl(t)� rl(0))

!2+
: (9.3)

This equation has long been known in the field of surface diffusion [20,67,179] and was first
suggested for use in zeolitic diffusion in a paper by Theodorou et al. [173].
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Sanborn and Snurr [153] calculated the diffusion of binary mixtures of CF4 and n-alkanes
in faujasite. Besides a Green-Kubo equation similar to Eq. 9.1 but generalized to multi-
component diffusion, they used the corresponding Einstein form. Good agreement was found
between the Einstein and the Green-Kubo results.

In a succeeding study by Sanborn and Snurr [154], they again studied a CF4-methane
mixture in faujasite, but now at various loadings. They used the calculated transport co-
efficients in a phenomenological flux equation over a whole membrane and concluded that
neglection of the cross-term Onsager coefficients Li j (with i 6= j), which is sometimes done
in Maxwell-Stefan models, can lead to quantitative (and sometimes even qualitative) errors.
They reported difficulties in obtaining consistent values for the L coefficients in two cases:
for the minor component as the composition of the other approaches 100 %, and for all com-
ponents in the limit of very low loadings. Despite several attempts to adjust the simulation
parameters, the problems remained unresolved.

Skoulidas and Sholl [161] studied the transport diffusion of CH4 and CF4 in silicalite at
a range of temperatures and loadings using the Einstein form. In contrast to the early results
of Maginn et al. they reported large deviations from the Darken equation.

In an earlier study, Sholl [160] investigated the macroscopic flux of Xe through AlPO4-
31 and CF4 through AlPO4-5 (both single-file systems). He used a coarse-grained model of
hopping on a lattice, but including various kinds of concerted motion, of which the hopping
parameters were taken from atomistic simulations. He calculated the corrected diffusivity
from the decay of cosine transformations of the density:

hCk(t)Ck(0)i= hCk(0)Ck(0)ie�Dk2t ; (9.4)

with

Ck(t) =
N

∑
i=1

cos(kzi(t))�
*

N

∑
i=1

cos(kzi(t))

+
: (9.5)

This is similar to the approach we took in Chapter 8 and to the equation we will derive in
the present study (Eq. 9.15), although we use in both cases the full Fourier transform of
the density and not only the cosine part. Sholl remarked that “... it examines the decay
of spontaneous density fluctuations in an equilibrium system, so no assumption about the
applicability of linear response theory need to be made.” We saw in Fig. 8.6 that this is not
strictly true, since it depends on the k-values that are examined. Given the large system sizes
that Sholl reached with his coarse-grained model, he found a perfectly constant diffusion
coefficient with the 4 k-values that he examined.

Note that also Eqs. 9.1 and 9.3 are strictly only true for macroscopic density fluctuations.
In an earlier study of ours (Chapter 8), we introduced the wavevector dependent form of the
Green-Kubo equation and studied explicitly the k-dependence of the diffusion coefficient.
This procedure had the obvious merit that it provided direct information on the regime of
linear response (i.e., those wavelengths where Dt becomes independent of k). In Eqs. 9.1 and
9.3 the limit of k ! 0 has already been taken and as a consequence any such information
is lost. The maximum wavelength (minimum k-value) of density fluctuations that can be
probed in a periodic system is equal to the length of the simulation box. Therefore it might
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be anticipated that when the above equations are applied in various simulation systems of
decreasing size, a trend may be found similar to the k-dependence of Dt as shown in Fig. 8.7.
In the present study we will investigate the system size dependence of the measured transport
diffusivity by performing simulations with several box sizes and compare the results to an
explicit wavevector-dependent equation applied to the largest box. In contrast to our earlier
study, we will use the Einstein formalism. This has the advantage that the integration over
the velocities is already carried out at each timestep by the integration scheme and does not
need to be performed afterwards. This leads to less statistical errors and the interval between
frames where data is stored to disk can be taken longer.

9.2 Theory

9.2.1 The Einstein form for Dc

In this chapter, we will focus on the calculation of the ‘corrected diffusivity’

Dc =
1
N

∞Z

0

dτ

*
N

∑
l=1

N

∑
m=1

vlz(τ)vmz(0)

+
; (9.6)

which is equal to the transport diffusivity divided by the thermodynamic correction factor
(∂ ln f=∂ lnc)T . The above expression can be brought into the equivalent Einstein-form by
working out the mean square displacement of the center of mass Z of the total number of
molecules in the system:

D
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: (9.7)

The velocity autocorrelation function decays to zero over a time in which τ is very small
which, together with Eq. 9.6, leads to

N
D
(Z(t)�Z(0))2

E
= 2Dct; (9.8)
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the Einstein form for the corrected diffusivity.
The velocities in Eq. 9.6 relate to the particle flux in a specific control volume. This gives

a specific meaning to the integrals in line 2 of Eq. 9.7, namely that only particles in the control
volume should be taken into account. As a consequence, the displacements in line 1 relate
to (parts of) trajectories that take place in the simulation box, which is exemplified by the
following expression:

Z(t)�Z(0) =
N

∑
i=1

tZ

0

dτvzi(τ)χ(zi(τ)) =
N

∑
i=1

nt

∑
n=1

∆zi(n)χ(zi(τ)) (9.9)

with n the count of the integration timesteps, and χ(z) the characteristic function which equals
1 inside the control volume and 0 outside. In the case of a periodic system, however, the inte-
grals can be calculated in an alternative way. Consider a particle that is leaving the simulation
box at the left hand side. From that moment on, it does not contribute anymore to the particle
flux in the control volume (i.e., the central simulation box). At the same time, however, its
periodic image enters the box at the right hand side. That particle contributes, say, a distance
v∆t in the next timestep to the motion of the material in the system. Because of the exact
correlation between the motions of a particle and its images the contribution of the image
that enters the box could just as well be added to the motion of the particle that left the box.
Therefore Eq. 9.8 can be conveniently evaluated as the total displacement of the unfolded
trajectories of all the particles that were once located within the box. It is important to realize
that this is only by virtue of the periodicity of the system and applies only when the whole
simulation box is taken into account.

9.2.2 A wavevector-dependent Einstein form

We will now derive a wavevector-dependent expression for the corrected diffusivity, equiva-
lent to Eq. 8.9. Starting from Eq. 8.3 we can write, for small values of kz:

d
dt
hρ̂(kz; t)ρ̂�(kz;0)i=�Dt(kz)k

2
z hρ̂(kz;0)ρ̂�(kz;0)i ; (9.10)

where it should be noted that ρ̂(k; t) stands for the Fourier component of the deviation of the
density from its equilibrium distribution. With

S(kz) =
1
N
hρ̂(kz;0)ρ̂�(kz;0)i= 1

N

�
∂ lnc
∂ ln f

�
T
; (9.11)

we arrive at

Dc(kz) =� 1
Nk2

z

d
dt
hρ̂(kz; t)ρ̂�(kz;0)i : (9.12)

Making use of the fact that both the right-hand and left-hand side are real, and adding two
time-independent averages, we can write

Dc(kz) =
1
N

1
2k2

z

d
dt
fhρ̂(kz; t)ρ̂�(kz; t)i�hρ̂(kz; t)ρ̂�(kz;0)i
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; (9.13)

with ρ̂eq the Fourier transform of the equilibrium density. Note that the last step is only valid
if exactly the same number of particles is present in the system at any time. By definition,
this holds true in a periodic system if the whole volume is taken into account.

In the final expression, the limit to small wavevectors could be taken again. By Taylor ex-
pansion up to first order, Eq. 9.8 is then recovered. Since in a finite periodic system of length
Lz the smallest possible value of kz equals 2π=Lz, this Taylor expansion is only possible for
finite and not too large values of t. If no Taylor expansion is performed, and t is extended to
macroscopic timescales, the difference e�ikzzl(t)�e�ikzzl(0) will eventually sample the interval
[0;1), and the average in Eq. 9.13 will level off to a constant value.

In both cases, first the limit Lz ! ∞ has to be taken, and only then t can be extended to
macroscopic times. The same conclusion follows when Eq. 8.3 is Fourier transformed into
the frequency domain:

ω2

k2
z

∞Z

0

dthρ̂(kz; t)ρ̂�(kz;0)ie�iωt = hρ̂(kz;0)ρ̂�(kz;0)iω2

k2
z

Dtk2
z

D2
t k4

z +ω2
: (9.14)

From this it is clear that first k ! 0 should be taken, and only then ω ! 0. If the limits are
taken in the reverse order, the right hand side tends to zero instead of to Dt .

In the perspective of the current derivation, the positions z relate to the positions of par-
ticles in the box. If Eq. 9.8 is calculated with the center-of-mass position from the (folded)
positions of the particles in the box, this expression will level off as well. In that inter-
pretation, if the limit to zero wavevector should be taken, the box size should be increased
correspondingly. In the limit of infinite system size (the usual thermodynamic limit), neglect-
ing edge effects of particles crossing the periodic boundary, the expression remains feasible.
If the expression is transformed into the Green-Kubo form (Eq. 8.9) the limit can be taken of
k ! 0, regardless of the choice for unfolding particle trajectories or not. This puts also Eqs.
9.1 and 9.3 into perspective; first the limit is taken to zero wavevector (which is equivalent
to deriving the expression for infinite system sizes), and subsequently the result is applied to
finite systems in the limit of t ! ∞.
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9.3 Simulations

We performed canonical and microcanonical molecular dynamics simulations on a system of
argon absorbed in AlPO4-5, with the same interaction parameters as in Chapter 8. We used
a timestep of 1 fs throughout and in the canonical simulations kept the average temperature
at its desired value by using a Nosé-Hoover thermostat with a relaxation time of 1.0 ps.
All simulations were done at a loading of 3 particles per unit cell and at a temperature of
87 K. They were performed with system sizes of 5, 10, 20, 30, and 60 unit cells in the z-
direction (the direction of the pore). In all cases, the simulation box contained one single
pore. Thermodynamic averages were taken by performing several simulations at the same
state but with different initial configurations.

In order to speed up the simulations, we used pretabulated sorbate-zeolite interactions on
a grid (in contrast to Chapter 8, where we did a full atomic simulation). Forces and energies
were evaluated via tricubic Hermite interpolation over the energy field, with a grid spacing of
0.1 Å. The reader is referred to the Appendix for an extensive discussion of the choice of the
interpolation scheme in these kinds of simulations.

The imaginary exponents in the one but last line of Eq. 9.13 were further worked out to
give

Dc(kz) =
1
N

1
2k2

z

d
dt

�� N

∑
l=1

coskz(zl(t))�
N

∑
l=1

coskz(zl(0))

�2

+

� N

∑
l=1

sinkz(zl(t))�
N

∑
l=1

sinkz(zl(0))

�2�
: (9.15)

This form is very convenient in simulations, since only single sums over particles occur.
Only two summations have to be evaluated per time frame (and per k-value), just like with
the Green-Kubo form of Chapter 8.

9.4 Results

We carried out canonical and microcanonical simulations to calculate self and corrected dif-
fusivities of argon in AlPO4-5. All simulations started after 20 ps of equilibration and pro-
duction runs ran 50 ns for the smallest box (5 unit cells), 40 ns for the 10 unit cell box, and
20 ns for all others.

First, single-particle mean square displacements were calculated up to correlation times
of 1 ns and self-diffusion coefficients were calculated from a fit over 0.1 to 1 ns of correlation
time. In all cases the mean square displacement curves were first averaged over 10 indepen-
dent runs. Next, we calculated corrected diffusivities, both from Eq. 9.8 (i.e., from the mean
square displacement of the center of mass), and from Eq. 9.15 (i.e., k-dependent diffusivities
for different k-values). In Fig. 9.1 we have plotted the center-of-mass motion in a system
of 60 unit cells z-length. Given the slow fluctuations on the timescale of the simulation, it
is clearly necessary to run the simulations for several tens of nanoseconds in order to obtain
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Figure 9.1: Center-of-mass motion in a sys-
tem with a length of 60 unit cells, containing
180 argon atoms.

0 200 400 600 800 1000
t [ps]

0

1

2

3

4

5

〈 (
z(

t)
−

z(
0)

)2  〉,
  N

〈 (
Z

(t
)−

Z
(0

))
2  〉 

 [n
m

2 ]

Figure 9.2: Mean square displacements of in-
dividual particles (solid lines) and of the cen-
ter of mass (dashed lines) in a system of 60
unit cells. Shown are the lines of 10 indepen-
dent runs and their averages (thick lines).
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Figure 9.3: Mean square displacement of the
center of mass, Eq. 9.8 (dashed line) and
right-hand side of Eq. 9.15 (without d=dt),
for the first 10 k-values (from top to bottom).
All results for a box size of 60 unit cells in
the pore direction.
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Figure 9.4: Dependence of measured self-
diffusion coefficients on the average temper-
ature in a system of 5 unit cells length. The
drawn line represents an Arrhenius fit.
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Figure 9.5: Dependence of measured cor-
rected diffusion coefficients on the average
temperature in a system of 5 unit cells length.
The drawn line represents an Arrhenius fit.

reliable correlation functions. The mean square displacements of the individual particles (av-
eraged) and of the center of mass are plotted in Fig. 9.2. Since the first is a single-particle
property (which can be measured N times in each frame) this leads to statistically much more
accurate results than the latter (which gives only one number per frame). Similar behaviour
can be seen in the Figures of Sanborn and Snurr [153], although they calculated correlation
functions only up to 10 ps. We plotted the mean square displacement of the center of mass
together with the right hand side of Eq. 9.15 (except for the d=dt factor) in Fig. 9.3. It is
clearly seen that for the larger k-values, the expression levels off at large correlation times,
as was anticipated in the previous section. It is also seen that for all curves, there is a subd-
iffusive regime up to ca. 10 ps, due to the difficulty of particle passings. For the extraction
of diffusivities, we looked for a region where the linear regime has started, but where most
k-dependent curves did not level off yet. We chose to take correlation times from 20 to 40
ps to calculate all our corrected diffusivities (both k-dependent and in the k ! 0 form). Note
that this correlation time interval is about the same order as was used in the work of Sanborn
and Snurr [153] (they used correlation times between 0 and 10 ps).

In order to check the reliability of our results, we repeated all simulations in the micro-
canonical ensemble (except for the largest box size), which should give the same average
results. The microcanonical runs were started with the end configurations of the canonical
simulations. Since now the system was not thermostatted, every different run settled at a
different temperature and the mean square displacements could not be averaged right away.
Therefore we calculated the mean square displacements from the individual runs as well as
the average temperatures. It is a well-known fact that diffusion in zeolites is an activated
process (see Chapter 6), so the temperature dependent diffusion coefficients could be fitted
to an Arrhenius law. Two examples are shown in Figs. 9.4 and 9.5.
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Figure 9.6: Self-diffusivities (circles) and
corrected diffusivities (diamonds) as a func-
tion of system size in both canonical (closed
symbols) and microcanonical simulations.
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Figure 9.7: Corrected diffusivities vs.
wavenumber (open symbols) from Eq. 9.15
for a system of 180 particles in 60 unit cells.
For comparison, the results of Eq. 9.8 for dif-
ferent box sizes are also shown (closed sym-
bols).

Final results for the self and corrected diffusivity for all box sizes are plotted in Fig. 9.6.
As can be seen, the corrected diffusivities depend substantially on the box size, whereas the
self-diffusion coefficients are nearly independent. For the self-diffusion, the NVT and NV E
simulations give virtually the same results, and for the corrected diffusivities agree within the
accuracy limits as well.

The results here are considerably larger for both diffusivities than the results in Chapter
8 (Cf. Fig. 8.6). This is probably due to problems with the thermostat that we experienced
in the previous study. There we used the Berendsen thermostat, which can give rise to an
exponential increase of the center-of-mass motion in small systems [120]. That is why we
removed the kinetic energy of the center of mass after every timestep. Although this is ad-
missible in bulk systems, where the total momentum should be conserved, it is not strictly
allowed when an external field (in this case provided by the zeolite lattice) is present. In fact,
if the center-of-mass motion would be totally constrained (instead of stopping it after each
step), Eq. 9.8 would give a corrected diffusivity of zero. We therefore believe that the present
results are more reliable.

We now turn to our wavevector dependent formula for Dc(kz), Eq. 9.15. We calculated
this quantity for 10 different k-vectors in our largest system. Again, averages were taken over
10 independent NV T simulations of 20 ns each. The results can be found in Fig. 9.7. The data
show the same general trend as was seen in Fig. 8.6. For comparison, we have also plotted the
results of Eq. 9.8 for all box sizes. With each box size we associated a wavevector of 2π=Lz.
It can be seen that for small values of kz, both methods show the same limiting behaviour.
Upon extrapolation to k ! 0, both methods would give approximately the same result. We
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Figure 9.8: Diffusion coefficients for differ-
ent control volumes in a system with a total
length of 60 unit cells (= 50:901 nm). The
circles denote the results from the center-of-
mass displacement of molecules initially lo-
cated in the control volume and the pyramids
show the results from the displacement of
only that material that is located in the box
at any time (Eq. 9.9). 0 10 20 30 40 50 60
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can conclude from this that although Eq. 9.8 is computationally simple and effective, it will
only give the correct result for large enough box sizes, as was expected. Our wavevector
dependent form, when applied to only one box size, has the advantage of giving results for
a whole range of k-values which can be readily extrapolated to the macroscopic limit. This
possibility is lost when Eq. 9.8 is used.

9.4.1 Center-of-mass motion

Despite the simplicity and efficiency of Eq. 9.8, one has to be careful not to misinterpret
its meaning. Unlike the mean square displacement of tagged particles, which can be mea-
sured from the motion of a single particle, or as an average over several, the mean square
displacement of the center of mass cannot be evaluated for an arbitrary part of the box. In
fact, the expression is only valid when the whole box is taken into account and its correctness
is entirely due to the periodicity of the system. It might be tempting to interpret this as the
following Gedanken-experiment. Consider the infinite channel of all periodic images. Now
at time zero, give all the particles in the central box a colour distinct from all their images.
The (transport) diffusion coefficient could then be measured from the evolution of the distri-
bution of coloured partcles, but again if and only if the motions of all the others are exactly
correlated with the coloured ones.

To show this in the simulations, we calculated the mean square displacement of the center
of mass of a subcollection of the molecules in the large box. We did this with half the number
of particles (giving two experiments that can be averaged per simulation), the total number
divided by three, N=4, N=5, and N=6. The resulting diffusion coefficients are plotted in Fig.
9.8. Although the considered particles may start out as a collective, they soon become (at least
partially) uncorrelated. In the limit of a control volume of the size of one particle, it comes
down to a calculation of the self-diffusion. As a reference, the self-diffusion coefficient is also
represented in the plot. Indeed the results indicate that the results tend to the self-diffusion.

We also investigated the behaviour of Eq. 9.8, but now with Z(t)�Z(0) calculated as in
Eq. 9.9. The results of this are displayed as the filled symbols in the same figure. Clearly,
these results are much more stable, although they also eventually decrease as the control
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Figure 9.9: Trajectory of an individiual par-
ticle over 20 ps, projected on the x;y-plane.
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Figure 9.10: Trajectory of an individiual par-
ticle over 20 ps, projected on the z;x-plane.

volume becomes too small.

9.4.2 Jump-like diffusion

Although molecular dynamics simulations have proven very succesful in the study of trans-
port in zeolites, much use is still been made of models of particles hopping on discrete lattices.
In Chapter 7 we used a lattice model to reach long time and length scales, and in one of the
early simulations of transport diffusion [40], also lattice models were used. This is common
practice for instance in the Maxwell-Stefan approach.

It is sometimes argued that the idea of particles hopping from one discrete site to the
other, and staying at those sites for a while in between the hops, could not be a very accurate
description for neutral molecules in fairly large pores. This objection might also apply to
argon in AlPO4-5, which is considered to be a large-pore zeolite. In Figs. 9.9 and 9.10 we
plotted a short trajectory of a single particle in our system. Clearly the particle stays for a
relatively long while in the vicinity of one oxygen ring, and then hops very fast to another. It
is thus seen that the hopping picture applies perfectly well to this particular system, despite
the fact that only van der Waals interactions play a role and the guest molecules are relatively
small with respect to the pore size.

From the xy-plot it can be seen that the particle remains at the pore edge all of the time,
i.e., including during the time of a hopping event. Since the hopping events seen in the zx-plot
are all tilted in projection on the xz-plane, this must mean that the particle that travels from
ring to ring follows a screw-like path. This is not surprising, since the six rings of oxygen
that act as adsorption sites are rotated 30 degrees with respect to one another. The hopping
event at the right of the figure thus probably reflects a hop to the nearest oxygen at the other
rings. The crossing in the middle of the figure at the bottom half then represents a crossing
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to the next nearest oxygen at the other ring.

9.5 Conclusions

In this chapter we have investigated various methods to calculate (corrected) collective dif-
fusion coefficients. One way to arrive at an equation to calculate collective diffusion co-
efficients is to invoke Onsager’s regression hypothesis [24, 36] and to model the decay of
a long-wavelength microscopic density fluctuation by the corresponding phenomenological
law, i.e., Fick’s law of transport diffusion. This directly yieds Eq. 9.10 which we subsequently
manipulated into Eq. 9.13. In the spirit of the derivation, the particles and their positions oc-
curring in this equation must be restricted to those of the control volume. In case the control
volume is all of the periodic simulation box, and kz is one of the reciprocal lattice vectors of
this box, one may just as well use the unfolded particle co-ordinates. In the thermodynamic
limit of an infinite box, this distinction does not exist anymore.

The usual practice in the literature is to first take the thermodynamic limit, leading to Eq.
9.8, and next to sample this equation with a finite periodic box. The variable Z(t) in this
equation is then taken to be the center-of-mass position of the unfolded trajectories. We have
shown in this chapter that this is only true in case the control volume is taken to be the whole
periodic box. In all other cases Z(t) should be interpreted as in Eq. 9.9. Secondly, we have
shown that the final result depends on the size of the box; this holds for our Puritan method
based on Eq. 9.13 as well as for the usual more Cavalier method based on Eq. 9.8. The
advantage of our method is that by calculating the diffusion coefficients for several values of
kz, we can judge if our box size was large enough, and if necessary estimate the infinite-box-
size value by extrapolation.

9.A Appendix. Grid-evaluation of sorbate-zeolite in-
teractions

Over the course of the years, it has become generally established that, at least for sorbate
molecules that are relatively small compared to the pore diameter, the diffusive motion of
guest molecules inside zeolitic channels is hardly affected by lattice vibrations (see e.g.,
Fritzsche et al. [64] or Kopelevich and Chang [114]). If the zeolite framework is considered
stiff, the lattice atoms can be excluded from the dynamics, thus saving much computational
cost. Even more time is saved when the sorbate-zeolite interactions are pretabulated on a
structured grid and subsequently interpolated during the actual simulations. This method was
introduced in 1990 by June et al. [101, 102].

For an interpolation scheme to be applicable in such a simulation, the most important
requirement is that no discontinuities in the forces occur upon crossing the boundaries of grid
cells, and that the force field is rotation free. One method that always ensures smooth inter-
polating functions is spline interpolation [119]. A three-dimensional cubic spline, however,
would require a full interpolation over the whole domain for every sorbate molecule at each
timestep. For any reasonable grid size, this would make the calculation more expensive than
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Figure 9.11: Definition of the grid cell as
used in the interpolation schemes.

a direct evaluation of the atomic interactions. This problem could be partially overcome by
performing a series of one-dimensional splines in the three directions, but the cost would still
be comparatively high. Besides that, in the latter approach the continuity of derivatives across
cell boundaries in the direction perpendicular to the spline would not be guaranteed.

The only way of arriving at a cost-effective interpolation is to use local methods, where
the forces on (and/or the potential energy of) a sorbate molecule is derived from function
values at neighbouring grid points. In Chapter 7, we applied such a method. After pretabu-
lating the forces in x-, y-, and z-direction on each grid point, we calculated the actual force
on a sorbate molecule by trilinear interpolation. (Trilinear interpolation over the energy was
also used in order to calculate the sorbate’s potential energy, but that does not play a role in
the dynamics.) Trilinear interpolation is the three-dimensional variant of the so-called ‘lever
rule’. Using the eight nearest grid points of a particle (i.e., the corners of the grid cell in
which it is located), one searches for a function

f (t;u) =
2

∑
i=1

2

∑
j=1

2

∑
k=1

ci jkt
i�1u j�1vk�1; (9.A.1)

where t, u, and v are the fractional co-ordinates within the grid cell: t = (x� xA)=∆x, u =
(y� yA)=∆y, and v = (z� zA)=∆z. For the rest of this appendix we will assume a cubic grid
cell (∆x = ∆y = ∆z), with the corners named as in Fig. 9.11.

In order to ensure continuity of the function (not its derivatives) across cell boundaries,
eight conditions are specified:

f (0;0;0) = f A; f (1;0;0) = f B; f (1;1;0) = f C; f (0;1;0) = f D;

f (0;0;1) = f E ; f (1;0;1) = f F ; f (1;1;1) = f G; f (0;1;1) = f H ; (9.A.2)

and by inversion one finds the coefficients ci jk:

f (t;u;v) = (1� t)(1�u)(1� v) f A + t(1�u)(1� v) f B

+ tu(1� v) f C + (1� t)u(1� v) f D

+ (1� t)(1�u)v f E + t(1�u)v f F

+ tuv f G + (1� t)uv f H:

(9.A.3)
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Figure 9.12: Total energy in an NVE simu-
lation of 180 Ar molecules in a pore system
of 60 unit cells by employing trilinear inter-
polation over pretabulated forces. Shown are
grid spacings 0.4 Å (top line), 0.2 Å (middle
line), and 0.1 Å (bottom line). The first 10
ps. represent equilibration at NVT with rigid
temperature scaling at every step. 200 400 600 800 1000
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Thus a simulation with trilinear interpolation over the force field (such as we performed in
Chapter 7) requires the storage of Fx, Fy, and Fz on each grid point (and U as well if one
wishes to calculate energies).

The accuracy of the above method can be checked by performing a simulation at constant
N, V , and E and monitoring how well total energy is conserved. The results of this for vari-
ous grid spacings are displayed in Fig. 9.12. The figure clearly shows a nearly monotonous
increase in the energy for all grid spacings. We suggest the following cause for this: differ-
entiating Fx with respect to y yields a different answer from differentiating Fy with respect
to x. This implies that no conservative field can be associated with the proposed force in-
terpolations. In other words, at every force evaluation a small error is made compared to
the force that would belong to the real underlying (conservative) potential energy field. This
adds a small (quasi-random) error to the particle’s velocity. Since the (kinetic) energy de-
pends quadratically on the particle velocities, this leads to a ‘diffusion’ of the total energy
(or, more precisely, of the mean square deviations of the velocities).

One way to reduce the errors in the force evaluations could be to incorporate more grid
points in the interpolation scheme. This would result in better estimates of the higher or-
der derivatives. (Cf. the three-, four- or five-point schemes for numerical approximation of
one-dimensional derivatives). We extended our 8-point scheme to a 27-point and a 64-point
scheme, respectively, but in both cases the results were hardly improved. This may not be
surprising, since for any crossing of a cell boundary, the scheme switches to a new interpolat-
ing function (because a new set of grid points have become the nearest ones). Consequently,
no matter how many extra grid points are taken into account, the derivative of the interpo-
lating function will always be discontinuous. Only the continuity of the function itself is
ensured, since the function values of the incorporated grid points are taken as constraints in
the construction of the scheme. The only way to attain higher order smoothness is to stick to
the eight nearest grid points but supply besides the function values, also first (and/or higher
order) derivatives as constraints.

A systematic study of local interpolation schemes with the above strategy has been de-
scribed by Russell [149]. He compared several schemes (all in two dimensions) of various
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orders focussing on the continuity across cell boundaries. He reported that bicubic inter-
polation is the lowest order two-dimensional interpolation procedure which maintains the
continuity of the function and its first derivatives both in the normal and tangential directions.

We will now derive the equations for tricubic interpolation over the potential energy field
(thus ensuring continuity of the forces). Note that the one-dimensional analogue of tricu-
bic interpolation is called ‘Hermite interpolation’. Here the function and its derivatives are
defined at two grid points, whereas standard cubic interpolation requires function values at
four interpolation points (but does not, for the same arguments as above, lead to a continuous
derivative distribution). Tricubic Hermite interpolation was also used in the second study of
June et al. [102] (in their first study they used three-dimensional spline interpolation [101]).

We now search for a function:

U(t;u;v) =
4

∑
i=1

4

∑
j=1

4

∑
k=1

ci jkt
i�1u j�1vk�1; (9.A.4)

with 64 unknown coefficients ci jk. With 8 grid points, we are allowed to specify 8 con-
straints at each grid point. For this we chose U , (∂U=∂t), (∂U=∂u), (∂U=∂v), (∂2U=∂u∂t),
(∂2U=∂v∂t), (∂2U=∂v∂u), and (∂3U=∂v∂u∂t). The resulting set of equations can in short be
written as

Bc = f; (9.A.5)

where the vector f contains all constraint values (∂U=∂t)A;(∂U=∂t)B; : : :(∂U=∂u)A; : : :, etc.
in one column and the vector c contains all coefficients ci jk. The 64�64-matrix B can then
be inverted to give the coefficients:

c = B�1f: (9.A.6)

The resulting matrix B�1 is given on page 128.
We find the forces on the particles by differentiation of Eq. 9.A.4. As a result of this

(∂2U=∂α∂β) is always equal to (∂2U=∂β∂α), which ensures that we have a consistent set of
Fx, Fy and Fz associated with a conservative field. Note that continuity across cell boundaries
of only the 8 imposed constraints is ensured. Derivatives of the forces parallel to their direc-
tions (e.g., (∂Fx=∂x) = (∂2U=∂x2)) and higher order derivatives will be discontinuous. It is
therefore not advantageous to go beyond the standard Verlet integration scheme with for ex-
ample a high order Gear predictor-corrector (like is done for instance in the work of Sanborn
and Snurr [153]), since the predictor relies upon the continuity of higher order derivatives.

Results for NV E simulations with the same grid spacings as in Fig. 9.12 but now with
tricubic interpolation over the potential energy field are given in Fig. 9.13. Clearly, the en-
ergy is now perfectly conserved for all grid spacings. No discernible trend was found over 1
ns of simulation time and for all grid spacings the root mean square deviation of the energy
amounted to 0.03 kJ/mol. The difference between the energy levels in Fig. 9.13 is almost en-
tirely due to the NV T equilibration period, where energy is not conserved and thus develops
differently in the three runs due to deviations of the particle trajectories. When the interpola-
tion routine with the three different grid spacings were applied to a single configuration, the
energies differed by 1 promille maximum.
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Figure 9.13: Total energy in an NV E simula-
tion of 180 Ar molecules in a pore system of
60 unit cells by employing tricubic interpo-
lation over pretabulated energies. Shown are
grid spacings 0.4 Å (top line), 0.2 Å (middle
line), and 0.1 Å (bottom line). The first 10
ps. represent equilibration at NVT with rigid
temperature scaling at every step. 0 200 400 600 800 1000
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In most present-day mainframes, storage of large amounts of numbers in memory is not
a problem. For our present application, the narrowest grid leads to a memory allocation for
the pretabulated grid of ca. 350 Mb (compared to 45 Mb for a spacing of 0.2 Å and 6 Mb
for a spacing of 0.4 Å). Given the fact that the simulation time is hardly affected by these
memory sizes, we decided to use a grid spacing of 0.1 Å throughout our simulations, since
those results would be closest to a direct evaluation of sorbate-zeolite interactions.
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The matrix B�1:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Summary

The research described in this thesis consists of two topics: simulation of the growth of atomic
crystals on the one hand, of the motion of guest molecules through porous crystals (zeolites)
on the other. Though seemingly unrelated, they share an important feature: in both cases,
their macroscopic behaviour is primarily governed by processes on the molecular scale. In
crystal growth, the macroscopic form of the crystal is determined by molecular motions at
the interfaces and in zeolitic diffusion, the transport of gases through the material is governed
by microscopic resistances felt by the molecules in the pores. A second common property of
the two systems is their difficult experimental accessibility. This is both caused by the small
scale (the zeolitic pores we describe have a diameter between 0.7 and 1 nm) and by the fact
that the region of interest lies between two dense phases (liquid and crystal), which limits the
use of light probes of any kind.

Because of the experimental difficulties, most measurements concern collective or av-
erage properties: the growth rate of a whole crystal surface or the collective diffusion co-
efficient in zeolites (measured by so-called ‘uptake’ experiments). Since the late 1970’s,
some microscopic experiments have been developed as well to measure diffusion coefficients
in zeolites: Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG-NMR), Quasi-elastic
Neutron Scattering (QENS), and very recently, interference microscopy.

Molecular Dynamics (MD) simulations nowadays provide an important tool in testing
theories that try to explain macroscopic behaviour from microscopic models. They can also
help linking the results of the above-mentioned microscopic and macroscopic experiments. In
MD, the equations of motion for a large collection of molecules are solved numerically. Be-
cause there is essentially no limit to the complexity of the used models, several assumptions
that are necessary in analytical theories can be tested directly.

Throughout this thesis we have used MD simulations to study the microscopic processes
that govern the macroscopic phenomena in both our systems. Our special focus is on the
extrapolation of simulation results to the macroscopic scale of experiments. In the remaining
two sections, we will describe the results of our research on both topics separately.

Growth of a Lennard-Jones crystal from the melt

The macroscopic form of a crystal represents its growth history: different forms evolve un-
der different experimental conditions. The physico-chemical circumstances determine the
growth rates of the individual crystal surfaces and the resulting form is bounded by the slow-
est growing faces. Understanding, predicting, or possibly even designing the forms of crystals
is of tremendous importance in both science and technology. The production process of al-
most any solid material involves at least one crystallization step and the transport (pumping)
properties of liquids containing small crystallites are mainly determined by the form of the
crystallites.
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As a first step in the prediction of growth morphologies, we study in this thesis the growth
rates of 1 surface of a Lennard-Jones crystal. In particular, we focus on the temperature de-
pendence of growth (and melting) rates close to the equilibrium temperature. All simulations
initially consist of a separate simulation of a bulk liquid and a bulk crystal, which are subse-
quently combined to give a two-phase system. To monitor the amount of crystalline material
throughout the two-phase simulations, we introduce a mathematical formula that allows us to
classify particles as ‘liquid-like’ or ‘solid-like’.

Growth and melting rates can be measured by (nonequilibrium) constant pressure simu-
lations at different temperatures. The lengths of these simulations are, however, limited to
the time over which the whole simulation box becomes crystalline (or liquid). Therefore we
present an alternative method in Chapter 2: we measure the decay of spontaneous fluctua-
tions of the amount of solid material in an equilibrium simulation (at constant volume) and
therefrom extract the same kinetic coefficient as from the nonequilibrium simulations. We
enhance the accuracy of both methods in subsequent chapters, to make a more quantitative
comparison possible. In Chapter 3 we show that in order to measure consistent growth and
melting rates in nonequilibrium simulations, it is crucial to incorporate the correct number of
‘lattice imperfections’ (small but noticeable disorder) in the crystalline phase. This is ensured
in Chapter 4, where we start all nonequilibrium simulations with extensive equilibration at
the melting point. By performing the most accurate simulations to date of this system, we
discover two linear regimes: a short-time regime which is associated with the relaxation of
the interface from its equilibrium shape to its steady-state nonequilibrium shape, and a long-
time regime which is associated with macroscopic growth (or melting). From the long-time
rates we find a linear temperature dependence with no slope discontinuity at the melting
point. This behaviour was already postulated in the 1920’s, but has raised some debate in
the literature due to contradicting results from simulations. We infer from our findings that
such deviations must be due to improper equilibration of the system or to the use of too short
observation times.

With a properly equilibrated system of a large enough size, we repeat our equilibrium
method at the melting point found from the nonequilibrium simulations. From this we find
two different regimes as well, the kinetic coefficients of which agree quantatively with the
results from the preceding chapters.

Transport of methane and argon in the zeolite AlPO4-5

Zeolites are crystals with a well-defined pore system of nanometer scale. Their pores can
selectively adsorb or release molecules or ions, giving zeolites a tremendous industrial po-
tential. They are widely used as catalysts, ion-exchangers, molecular sieves, drying agents,
and many more. In almost all applications the transport of guest molecules through the pores
plays a crucial role. In this thesis we focus on the diffusion of methane and argon through
the zeolite AlPO4-5, which has an internal structure of one-dimensional, non-interconnected
pores.

In Chapter 7 we study the self-diffusion of methane in AlPO4-5. The size of methane
molecules is such that they are just able to pass each other in the pores. We find that the
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mean square displacement of the particles scales with the correlation time to the power of
0.6, just above the theoretical value of 0.5 for particles that cannot pass at all (single-file
diffusion). On the long timescale, however, the infrequent passages of the particles dominate
the dynamics. By switching over to a coarse-grained hopping model (with parameters taken
from the atomistic simulations), we get access to this timescale as well. In that regime, we
find normal diffusion and are able to calculate the self-diffusion coefficient.

Most practical applications of zeolites involve the transport of molecules under nonequi-
librium conditions. This is not governed by self-diffusion but by transport diffusion. The
purpose of Chapters 8 and 9 is the calculation of the transport diffusion coefficient. To
avoid the complications of anomalous diffusion, we study the transport of argon molecules,
which are smaller than methane molecules. For the same reason as with the crystal growth
simulations, we seek a method to calculate the nonequilibrium property from equilibrium
simulations. In this case we measure the transport diffusion coefficient from the decay of
spontaneous fluctuations of density waves in the system. In Chapter 8 we present a Green-
Kubo expression that depends explicitly on the wavelength of the density waves. From the
dependence of the diffusion coefficient on the wavelength, we can pinpoint the onset of the
linear response regime. These results set a lower limit to the length of the simulation system
to be used in both equilibrium and nonequilibrium simulations.

We elaborate a little further on this in Chapter 9, where we compare our wavelength-
dependent results with the results for different system sizes from an expression in which the
limit to infinite wavelengths has already been taken. We find that the box size dependence
of the latter expression is similar to the wavelength dependence of our results. This is not
surprising because, although the limit is taken to infinite wavelengths analytically, the max-
imum wave that is probed by the system is the one that is commensurate to the boxlength.
We also demonstrate that the usual Einstein expression for transport diffusion (in which the
diffusion coefficient is calculated from the mean square displacement of the center of mass
of the adsorbed species), is only valid in periodic systems and only if the whole box is taken
as control volume.
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Samenvatting in het Nederlands

Het onderzoek dat in dit proefschrift wordt beschreven is tweeledig: het betreft het model-
leren van enerzijds de groei van atomaire kristallen en anderzijds de beweging van gast-
moleculen door poreuze kristallen (zeolieten). Hoewel deze onderwerpen op het eerste ge-
zicht weinig verwant lijken is er toch een sterke overeenkomst: in beide gevallen worden
processen beschreven waarbij de macroscopische (met het blote oog waarneembare) ver-
schijnselen in sterke mate beheerst worden door datgene wat zich op moleculaire schaal af-
speelt; een kleine verandering of oneffenheid op het niveau van de moleculen kan een grote
verandering in het macroscopische gedrag tot gevolg hebben. Een andere overeenkomst tus-
sen beide systemen is dat zij experimenteel moeilijk toegankelijk zijn. De zeolietkanaaltjes
uit dit proefschrift hebben een diameter die varieert tussen 0.7 en 1 nanometer (1 miljoen-
ste deel van een millimeter). Op deze schaal is het onmogelijk bijvoorbeeld een ingenieuze
camera door het kanaal te laten meebewegen om te kijken hoe het transport van moleculen
in zijn werk gaat, zoals dat bijvoorbeeld wel kan in de medische wereld als de stroming in
een bloedvat bestudeerd moet worden. De interessante processen in de kristalgroei vinden
plaats aan het grensvlak van het kristal met de vloeistof en dit grensvlak is op zijn hoogst ook
enkele nanometers dik. Er zijn tegenwoordig wel zeer geavanceerde microscopen beschik-
baar waarmee bijvoorbeeld het oppervlak van een siliciumkristal tot op atomaire precisie
kan worden bestudeerd, maar deze en andere technieken zijn alleen toepasbaar bij kristal-
oppervlakken in contact met een gasfase. Bij een kristal dat uit de smelt groeit bevindt het
grensvlak zich tussen twee dichte fasen, wat een grote experimentele belemmering oplevert.
In ons systeem is het dichtheidsverschil tussen het kristal en de vloeistof zelfs slechts 13.5
procent (hoewel de wijnkenner dit een stevig percentage zal vinden, betekent het voor ons
een miniem verschil).

Dat de experimenten niet tot op moleculaire schaal kunnen doordringen, wil niet zeggen
dat er aan deze systemen helemaal niet gemeten kan worden. Zo is het in bepaalde geval-
len wel mogelijk om het voortschrijden van een heel kristalvlak door de smelt te volgen en
daarmee de groeisnelheid van dat specifieke vlak te meten. Met moderne NMR-technieken
kunnen diffusiecoëfficiënten in zeolieten worden gemeten. Deze geven de gemiddelde ver-
plaatsing van moleculen per tijdseenheid weer. Ook kan met een zogenaamd ‘uptake’-expe-
riment worden gekeken hoeveel materiaal er in een bepaald tijdsbestek door het zeoliet wordt
opgenomen. Om een beter begrip te krijgen van de uitkomsten van dergelijke experimenten,
zijn er in de loop der jaren tal van theorieën ontwikkeld die macroscopische verschijnselen
verklaren op basis van een microscopisch beeld van de werkelijkheid. De voorspellingen die
met die theorieën worden gedaan kunnen experimenteel getest worden, waarna het microsco-
pische beeld kan worden bijgesteld of verfijnd. Om analytisch hanteerbaar te blijven, mogen
de modellen niet te gecompliceerd worden, of moeten aannames worden gedaan waarvan de
implicaties niet altijd te overzien zijn.

Sinds de jaren ’60 is er een nieuwe manier bijgekomen om inzicht in moleculaire pro-
cessen te krijgen, namelijk computersimulaties. Hoewel er verschillende mogelijkheden zijn,
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hebben we in het in dit proefschrift beschreven onderzoek uitsluitend gebruik gemaakt van
Moleculaire Dynamica-simulaties (MD). Uitgaande van een bepaald interactiemodel tussen
de moleculen worden de bewegingsvergelijkingen van Newton numeriek opgelost. Op elk
moment worden de krachten tussen alle deeltjes bepaald en daarmee worden hun posities en
snelheden op een iets later tijdstip berekend. Dan worden opnieuw de krachten bepaald en
zo wordt geleidelijk de hele dynamica opgebouwd. Een van de voordelen van deze methode
is dat de interactiemodellen zeer gedetailleerd gemaakt kunnen worden. Omdat het systeem
numeriek (stapje voor stapje) wordt doorgerekend hoeven er niet allerlei aannames te worden
gedaan die voor een analytische behandeling wel noodzakelijk zijn. Een ander groot voordeel
is dat elk deeltje afzonderlijk in de tijd kan worden gevolgd en dat daarmee alle moleculai-
re informatie voorhanden is. Uit het tijdgemiddelde gedrag kunnen bovendien grootheden
worden uitgerekend die wel experimenteel kunnen worden gemeten (zoals bijvoorbeeld kris-
talgroeisnelheden of diffusiecoëfficiënten). Door de resultaten van experimenten en simu-
laties te vergelijken kunnen de modellen worden verbeterd en de modelparameters worden
geoptimaliseerd.

We zullen nu in het kort beschrijven wat de resultaten zijn geweest van ons onderzoek
aan kristalgroei en in de daaropvolgende sectie zullen we de uitkomsten van het onderzoek
aan diffusie in zeolieten behandelen.

Groei van een Lennard-Jones kristal vanuit de smelt

Iedereen die wel eens een mineraalkristal heeft gezien zal in de eerste plaats getroffen zijn
door de perfect gladde oppervlakken en de symmetrische vormen. Deze vormen weerspie-
gelen de onderliggende microscopische structuur waarbij ieder atoom zijn thermodynamisch
gunstigste plaats op een rooster heeft ingenomen. De uitwendige vorm van een kristal wordt
echter ook in hoge mate bepaald door de omstandigheden waaronder het gegroeid is. Zo is
het bevriezen van water in de lucht over het algemeen diffusie-gelimiteerd; de aanvoer van
water kan het groeiproces niet bijhouden waardoor fractalachtige structuren (sneeuwkristal-
len) ontstaan. Wordt water echter langzaam vanuit de smelt bevroren dan kunnen gladde
oppervlakken onstaan die een Elfstedentocht mogelijk maken. Behalve in de natuur, speelt
kristalgroei ook in de industrie een belangrijke rol. In het productieproces van iedere vaste
stof (variërend van computerchips tot medicijnen) komt wel ergens een kristallisatiestap voor.
Het is dus van zowel wetenschappelijk als technologisch belang om fundamenteel inzicht te
krijgen in de microscopische basis van kristalgroei.

De macroscopische vorm van een kristal wordt bepaald door de snelheid waarmee de
verschillende kristalvlakken groeien; alleen de langzaamst groeiende vlakken zijn terug te
vinden. Een voorspelling van de uitwendige vorm is dus mogelijk op basis van de groei-
snelheden van de belangrijkste vlakken. Als een eerste stap op weg naar zo’n voorspelling
beschouwen we in dit proefschrift de groeisnelheid van 1 vlak van een kristal bestaande uit
zachte bollen. De interactiepotentiaal die we daarvoor gebruiken is goed in staat om de
eigenschappen van edelgassen zoals argon te beschrijven. We bestuderen de temperatuuraf-
hankelijkheid van de groeisnelheid zeer dicht bij het smeltpunt, wat bij argon gelijk staat aan
82 Kelvin (191 graden Celsius onder nul).
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We beginnen steeds met het simuleren van een volume met vloeistof en een volume met
kristal, in ons geval een vlakkengecentreerd kubisch (FCC) rooster. Na een tijdje worden bei-
de systemen gecombineerd en rekenen we met het gehele systeem verder. Daarbij passen we
voortdurend het volume zodanig aan dat de druk (gemiddeld) constant blijft. Bij een tem-
peratuur onder het smeltpunt zal de vloeistof kristalliseren, erboven zal het kristal smelten.
We hebben een wiskundige formule opgesteld waarmee we van elk deeltje kunnen zeggen
of het tot de kristal- of tot de vloeistoffase behoort. Op deze manier kunnen we dus bij elke
gewenste temperatuur de groei- of smeltsnelheid meten.

Er is echter een probleem: als het systeem een tijdje is aangegroeid (of gesmolten) raakt
al snel een van beide fasen op, wat de maximale lengte van de simulaties drastisch beperkt.
Dit effect is groter naarmate het systeem verder uit evenwicht is. Daarom introduceren we in
Hoofdstuk 2 een alternatieve methode: we simuleren het tweefasensysteem nu niet bij con-
stante druk maar bij constant volume. Zo blijft het systeem van nature in evenwicht en is de
lengte van de simulaties dus niet beperkt. Immers, als er spontaan wat materiaal kristalliseert
zal de druk afnemen doordat het kristal een grotere dichtheid heeft. Door de lagere druk zal
het smelten weer worden bevorderd, en vice versa. In Hoofdstuk 2 leiden we een formule
af waarmee we uit de fluctuaties van de hoeveelheid kristallijn materiaal dezelfde informatie
kunnen halen als uit de simulaties bij constante druk.

In de volgende hoofdstukken verhogen we de nauwkeurigheid van beide metingen, te be-
ginnen met de niet-evenwichtssimulaties. In Hoofdstuk 3 onderzoeken we de invloed van de
manier waarop het systeem wordt geprepareerd. Wanneer de vloeistof tegen het kristal wordt
aangezet moet het systeem zich aan de nieuwe situatie aanpassen voordat het zich stabiel
gedraagt. In dit hoofdstuk laten we zien dat de mate van wanorde in het kristal (de hoe-
veelheid deeltjes die een kleine afwijking ten opzichte van de ideale roosterpositie vertonen)
cruciaal is om de goede snelheden te meten. Bevat het kristal minder wanorde dan er zou zijn
in een reëel kristal bij die temperatuur, dan worden smeltsnelheden gemeten die te laag zijn
ten opzichte van de gevonden groeisnelheden.

In Hoofdstuk 4 doen we bij elke meting eerst een lange ‘equilibratie’ bij het smeltpunt
voordat we de niet-evenwichtstemperatuur instellen. Tijdens de daaropvolgende metingen
volgen we nauwkeurig de toename (of de afname) van de hoeveelheid kristallijn materiaal.
Hierbij blijken twee regimes op te treden. Hoewel het systeem lang geëquilibreerd is bij het
smeltpunt moet het grensvlak zich nog wat herstructureren als de temperatuur wordt veran-
derd: als de temperatuur wordt verlaagd is de stabiele vorm van het grensvlak smaller, bij
een verhoging is deze breder. We vinden dus een initieel regime waarin het grensvlak zich
aanpast aan de niet-evenwichtssituatie en een langetijds-regime van groeien of smelten. Door
zeer nauwkeurig te middelen bij een voldoende groot systeem blijken we in staat de tempe-
ratuurafhankelijkheid van beide processen te bepalen. Het tweede regime blijkt daarbij een
perfect rechte lijn op te leveren. Hoewel de wetenschapper Tammann dit al in de jaren ’20
voorspelde zijn in simulaties van verschillende groepen toch discontinuı̈teiten gevonden. Op
grond van onze resultaten kunnen we het vermoeden uitspreken dat dergelijke afwijkingen
van een rechte lijn toe te schrijven moeten zijn aan een onzorgvuldige preparatie van het
systeem.

Nu we geleerd hebben hoe het systeem het best geprepareerd kan worden, welke grootte
het ten minste moet hebben en we bovendien zeer nauwkeurig het smeltpunt bepaald hebben,
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herhalen we in Hoofdstuk 5 nogmaals de evenwichtsmethode. We brengen wat verfijningen
aan in de formule en voorzien de afleiding van extra commentaar. De resultaten van een lange
en zo nauwkeurig mogelijke evenwichtsmeting blijken ook twee regimes op te leveren die in
overeenstemming zijn met de resultaten van de voorgaande hoofdstukken.

Transport van methaan en argon in het zeoliet AlPO4-5

Zeolieten zijn kristallen die in hun structuur zeer goed gedefiniëerde kanaaltjes van molecu-
laire diameters bevatten. De ontdekking door de Zweed Cronstedt in 1756 dat zeolieten grote
hoeveelheden water bevatten die ze bij verwarming weer vrijgeven, leidde (twee eeuwen
later) tot talloze alledaagse en technologische toepassingen. Zo wordt van de wateruitwis-
seling gebruik gemaakt in vochtvangers (ter vervanging van silicagel), geurvreters, katten-
bakkorrels en luchtdrogers. Door hun chemische structuur zijn zeolieten erg goede ionen-
uitwisselaars waardoor ze als waterontharders kunnen worden gebruikt (sinds het verbod op
fosfaten bevat elk wasmiddel tegenwoordig zo’n 30 procent aan zeolieten). De grootte en de
verschillende configuraties van de poriën maakt dat zeolieten uitgebreid ingezet worden als
moleculaire zeven of specifieke katalysatoren, bijvoorbeeld in kraakreacties in de aardolie-
industrie. Sinds in de loop van de vorige eeuw is aangetoond dat zeolietstructuren in allerlei
gewenste samenstellingen vrij eenvoudig gesynthetiseerd kunnen worden, is het aantal toe-
passingsmogelijkheden exponentieel gegroeid.

Voor een goed gebruik van bestaande en een efficiënte synthese van nieuwe zeolieten is
het van groot belang inzicht te hebben in de moleculaire transportmechanismen in de kanaal-
tjes. Ook hier kunnen simulaties veel inzicht verschaffen. Omdat de systemen in simulaties
doorgaans veel kleiner zijn dan experimentele systemen, moet veel aandacht geschonken
worden aan een juiste extrapolatie van de simulatieresultaten naar grote tijd- en lengtescha-
len, anders is een vergelijking met experimentele meetgegevens niet mogelijk.

In Hoofdstuk 7 bestuderen we de zelfdiffusie van methaan in het zeoliet AlPO4-5. Me-
thaanmoleculen zijn zo groot dat ze elkaar zeer moeilijk kunnen passeren in de kanalen van
het zeoliet. We meten dan ook een gemiddelde kwadratische verplaatsing die dicht in de
buurt komt van het gedrag van deeltjes die elkaar helemaal niet kunnen passeren. Op zeer
grote tijdschaal gaan echter de sporadische passages het diffusiegedrag overheersen. Om dit
goed te bestuderen schakelen we over op een vereenvoudigd simulatiemodel waarvan we de
parameters afstemmen op de gedetailleerde simulaties. Met het vereenvoudigde model ko-
men we tot grote tijd- en lengteschalen en vinden we inderdaad normaal diffusief gedrag
terug. Een discrepantie in de literatuur tussen verschillende experimenten kunnen we nu ver-
klaren aan de hand van de verschillende tijdschalen waarop deze experimenten gebaseerd
zijn.

De zelfdiffusiecoëfficiënt is een evenwichtsgrootheid. De meeste technologische proces-
sen vinden echter bij niet-evenwicht plaats. Het transport van moleculen onder invloed van
een concentratiegradiënt wordt bepaald door de collectieve diffusiecoëfficiënt. Het bereke-
nen van deze grootheid is de inzet van Hoofdstuk 8. Daar bestuderen we argon in AlPO4-5.
Omdat argonmoleculen iets kleiner zijn dan methaanmoleculen hebben we minder last van
afwijkingen van normale diffusie. Om dezelfde reden als bij de kristalgroei proberen we ook
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hier een niet-evenwichtsgrootheid uit te rekenen aan de hand van een simulatie bij evenwicht.
Haalden we in Hoofdstuk 5 de groeisnelheid uit fluctuaties van de hoeveelheid kristallijn ma-
teriaal, hier halen we de collectieve diffusiecoëfficiënt uit de fluctuaties van de dichtheid. Dat
betekent dat we het, op atomaire schaal chaotisch bewegende, dichtheidsprofiel opgebouwd
denken uit een heleboel golven. We bekijken het verval van dichtheidsgolven met verschil-
lende golflengte en berekenen het verband tussen de gevonden coëfficiënt en de golflengte.
Het gebied waar het resultaat niet meer van de golflengte afhangt kan geassocieerd worden
met het zogenaamde regime van lineaire respons. Omdat de aanname van lineaire respons
ten grondslag ligt aan alle niet-evenwichtsmethodes kan uit onze resultaten worden afgelezen
hoe groot de systemen moeten zijn en hoe klein de gradiënten in het geval van niet-even-
wichtsmetingen.

In Hoofdstuk 9 beschouwen we een door anderen gebruikte formule waarin de extrapo-
latie naar oneindige golflengte (en dus impliciet oneindige systeemgrootte) vooraf is uitge-
voerd. We tonen aan dat de resultaten met deze formule nog steeds van de systeemgrootte
afhangen aangezien maximaal de langste golf die in het systeem past wordt bemonsterd. De
resultaten voor grotere systemen zijn in overeenstemming met de resultaten van onze formule
voor grote golflengtes.
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overzien en op cruciale momenten een verrassende doorsteek kan vinden. Wim, bedankt
voor de mogelijkheden die je geboden hebt en voor het in mij gestelde vertrouwen. De vele
discussies (soms tot in de kleine uurtjes) heb ik zeer gewaardeerd. Met name in het laatste
jaar waarin onze creatieve ideetjes keer op keer werden ingehaald door nieuwe simulatie-
resultaten maar waaruit uiteindelijk toch een consistent beeld en veel inzicht naar voren is
gekomen.

Vervolgens bedank ik de (oud-)leden van de leerstoel Computational Chemistry, die de
afgelopen jaren de wetenschappelijke thuisbasis vormden: Marc Hulshof, mijn eerste kamer-
genoot, voor de gezelligheid, de vele computerhulp en de altijd aanwezige belangstelling;
Reinier Akkermans, voor het altijd openstaan voor een vraag van welke aard dan ook en
voor de vele gesprekken over onderwijs en webpagina’s; Wouter den Otter, voor de talrij-
ke discussies in de mensa en daarbuiten en voor de niet-aflatende inzet om dingen tot op
de bodem uit te zoeken; en Johan Padding voor de hulpvaardigheid en het (soms ontem-
bare) enthousiasme. Verder Martin, Dick, Frank, Nico, Bob, Roelof en Tanya voor de vele
(koffietafel-)discussies, voor de (email-)ondersteuning en voor het lezen van (delen van) het
manuscript.

Van de vele studenten die deel hebben uitgemaakt van de groep wil ik er twee met name
noemen: Sonja Engels, die ik mocht begeleiden bij haar afstudeeropdracht en Jacob Hoogen-
boom, zonder wie Hoofdstuk 8 er nooit in deze vorm zou zijn geweest.

Om het op enig moment tot ‘grootste rekenaar van Nederland’ te kunnen schoppen is veel
computerondersteuning nodig. Die kwam in de eerste plaats van de (vroegere) powergroup-
leden van Silicon Graphics / SGI (Ronald, Peter, Luc, Ruud en Bart), van wie ik veel leerde
over supercomputing en parallellisatie. Daarnaast was ook de ondersteuning vanuit SARA
(Henk en Mark) van grote klasse!

Hoewel het het laaste half jaar soms anders leek, is er meer in het leven dan wetenschap
alleen. Voor mij vormt de muziek een belangrijke uitlaatklep. Daarbij heeft mijn begeleider
en muzikale broer Onno Coster een grote rol gespeeld. Onno, ik hoop dat we de Leopatra-
spirit nog jaren kunnen volhouden, ook als daar straks een grote oceaan tussen zit. ‘Leo
bedankt!’

Een andere muzikale uitlaatklep werd gevormd door de ‘dames uit Eibergen’; met name
als de weekendberekeningen weer eens op niets waren uitgelopen en ik ’s maandags nauwe-
lijks was opgeschoten, zorgde hun grote inzet en motivatie er altijd voor dat ik weer vrolijk
naar huis reed. Hun bijdrage aan dit proefschrift is dan ook groter dan ze zelf kunnen ver-
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moeden.
Op deze plaats wil ik ook mijn ouders bedanken, die me tot op de dag van vandaag on-

voorwaardelijk gesteund hebben en op wie ik altijd heb kunnen terugvallen. Daarin wil ik ook
graag mijn zus Marion betrekken die, iets meer vanaf de zijlijn, ook altijd haar belangstelling
heeft getoond.

En ten slotte, Irene. Bedankt voor alle steun de afgelopen jaren en voor je bijdrage aan
dit proefschrift tussen de regels door. Het einde van de promotieperiode vormt voor ons in
vele opzichten het begin van een nieuw groot avontuur. Ik hoop dat we daar nog lang samen
van kunnen genieten.

Harald Tepper Enschede, september 2001

142



Bibliography

[1] D.J. Adams, Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Mol. Phys. 29, 307 (1975).

[2] B.J. Alder and T.E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208 (1957).

[3] B.J. Alder and T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459
(1959).

[4] M.P. Allen, Back to basics, in Computer Simulation in Chemical Physics, ed. by M.P. Allen and D.J. Tildes-
ley (Kluwer Academic Publishers, the Netherlands, 1993). [pp. 49-92]

[5] M.P. Allen and D.J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987).

[6] R.J. Argauer and G.R. Landolt, U.S. Patent 3,702,886 (1972).
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[119] P. Lancaster and Kȩstutis S̆alkauskas, Curve and surface fitting. An introduction (Academic Press, London,
1986).

[120] A.S. Lemak and N.K. Balabaev, On the Berendsen thermostat, Mol. Sim. 13, 177 (1994).

[121] A.C. Levi and M. Kotrla, Theory and simulation of crystal growth, J. Phys.: Cond. Mat. 9, 299 (1997).

[122] C.S. Liu, J. Xia, Z.G. Zhu, and D.Y. Sun, The cooling rate dependence of crystallization for liquid copper:
A molecular dynamics study, J. Chem. Phys. 114, 7506 (2001).

[123] E.J. Maginn, A.T. Bell, and D.N. Theodorou, Transport diffusivity of methane in silicalite from equilibrium
and nonequilibrium simulations, J. Phys. Chem. 97, 4173 (1993).

[124] I.V. Markov, Crystal growth for beginners (World Scientific, New York, 1995).

[125] J.C. Maxwell, Phil. Mag. 19, 19 (1860), and Phil. Mag. 20, 21 (1860). [Reproduced in Scientific papers of
J.C. Maxwell, ed. by W.D. Niven, p. 629 (Dover, New York, 1952).]

[126] J.W. McBain, The sorption of gases and vapors by solids (Rutledge and Sons, London, 1932). [Chapter 5]

[127] W.M. Meier and D.H. Olson, Atlas of Zeolite Structure Types (Butterworth-Heinemann, London, 1992).

[128] S.L. Meisel, J.P. McCullough, C.H. Lechthaler, and P.B. Weisz, Gasoline from methanol in one step, Chem.
Tech. 6, 86 (1976).

[129] R.M. Milton, U.S. Patent 2,882,243 (1959).

[130] R.M. Milton, U.S. Patent 2,882,244 (1959).

[131] B. Moore, Zeitschr. f. Phys. Chem. 12, 545 (1893).

[132] A. Mori, Effect of mass flow in melt on the motion of the crystal-melt interface of hard spheres: A molecular
dynamics study, J. Phys. Soc. Jap. 66, 1579 (1997).

147



BIBLIOGRAPHY

[133] R. Moss and P. Harrowell, Dynamic Monte Carlo simulations of freezing and melting at the 100 and 111
surfaces of the simple cubic phase in the face-centered-cubic lattice gas, J. Chem. Phys. 100, 7630 (1994).

[134] T. Motooka, K. Nisihira, S. Munetoh, K. Moriguchi, and A. Shintani, Molecular dynamics simulations of
solid-phase epitaxy of Si: Growth mechanisms, Phys. Rev. B 61, 8537 (2000).

[135] F.Müller-Plathe, S.C. Rogers, and W.F. van Gunsteren, Gas sorption and transport in polyisobutylene: Equi-
librium and nonequilibrium molecular dynamics simulations, J. Chem. Phys. 98, 9895 (1993).

[136] J.J. Nicolas, K.E. Gubbins, W.B. Streett, and D.J. Tildesley, Equation of state for the Lennard-Jones fluid,
Mol. Phys. 37, 1429 (1979).

[137] W. Niessen and H.G. Karge, Stud. Surf. Sci. Catal. 60, 213 (1991).

[138] S.S. Nivarthi, A.V. McCormick, and H.T. Davis, Diffusion anisotropy in molecular sieves. A Fourier trans-
form PFG NMR study of methane in AlPO4-5, Chem. Phys. Lett. 229, 298 (1994).

[139] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys.
81, 511 (1984).

[140] D.W. Oxtoby and P.R. Harrowell, The effect of density change on crystal growth rates from the melt, J.
Chem. Phys. 96, 3834 (1992).

[141] D.W. Oxtoby and Y.C. Shen, Density functional approaches to the dynamics of phase transitions, J. Phys.:
Cond. Matt. 8, 9657 (1996).

[142] E. Passaglia and D. Pongiluppi, Mineral. Mag. 40, 298 (1975).

[143] L. Pauling, Proc. Nat. Acad. Sci. 16, 453 (1930).

[144] L. Pauling, Z. Kristallogr. 74, 213 (1930).

[145] P.M. Richards, Interface kinetics of freezing and melting with a density change, Phys. Rev. B 38, 2727
(1988).

[146] J.W. Richardson Jr., J.J. Pluth, and J.V. Smith, Aluminophosphate number 5: time-of-flight neutron powder
diffraction study of calcined powder at 295 K, Acta Cryst. C43, 1469 (1987).

[147] L. Riekert, Rates of sorption and diffusion of hydrocarbons in zeolites, AIChE J. 17 446 (1971).

[148] B. Roux and M. Karplus, Ion-transport in a Gramicidin-like channel: Dynamics and mobility, J. Phys.
Chem., 95, 4856 (1991).

[149] W.S. Russell, Polynomial interpolation schemes for internal derivative distributions on structured grids,
Appl. Num. Math. 17, 129 (1995).

[150] D.M. Ruthven, R.I. Derrah, and K.F. Loughlin, Diffusion of light hydrocarbons in 5A zeolite, Can. J. Chem.
51, 3514 (1973).

[151] D.M. Ruthven, Principles of adsorption and adsorption processes (John Wiley, New York, 1984).

[152] Y. Saito, Statistical physics of crystal growth (World scientific, Singapore, 1996).

[153] M.J. Sanborn and R.Q. Snurr, Diffusion of binary mixtures of CF4 and n-alkanes in faujasite, Sep. Purif.
Techn. 20, 1 (2000).

[154] M.J. Sanborn and R.Q. Snurr, Predicting membrane fluc of CH4 and CF4 mixtures in faujasite from molec-
ular simulations, Submitted to AIChE J.

[155] O.F. Sankey and P.A. Fedders, The generalized atomic hopping problem — particle correlation functions,
Phys. Rev. B 15, 3586 (1977).

[156] U. Schemmert, J. Kärger, and J. Weitkamp, Interference microscopy as a technique for directly measuring
intracrystalline transport diffusion in zeolites, Microp. Mesop. Mat. 32, 101 (1999).

[157] Y.C. Shen and D.W. Oxtoby, Density functional theory of crystal growth: Lennard-Jones fluids, J. Chem.
Phys. 104, 4233 (1995).

[158] Y.C. Shen and D.W. Oxtoby, Nucleation of Lennard-Jones fluids: A density functional approach, J. Chem.
Phys. 105, 6517 (1996).

[159] Y.C. Shen and D.W. Oxtoby, bcc Symmetry in the crystal-melt interface of Lennard-Jones fluids examined
through density functional theory, Phys. Rev. Lett. 77, 3585 (1996).

148



BIBLIOGRAPHY

[160] D.S. Sholl, Predicting single-component permeance through macroscopic zeolite membranes from atomistic
simulations, Ind. Eng. Chem. Res. 39, 3737 (2000).

[161] A.I. Skoulidas and D.S. Sholl, Direct tests of the Darken approximation for molecular diffusion in zeolites
using equilibrium molecular dynamics, Phys. Chem. B 105, 3151 (2001).

[162] W. Smith and T.R. Forester, DL POLY 2.0: A general-purpose parallel molecular dynamics simulation
package, J. Molec. Graphics 14, 136 (1996).

[163] J. Stefan, Wien. Ber. 65, 323 (1872).

[164] G. Tammann, Kristallisieren und schmelzen. Ein Beitrag zur Lehre derÄnderungen des Aggregatzustandes
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[181] N. Van-Den-Begin, L.V.C. Rees, J. Caro, and M. Bülow, Fast adsorption-desorption kinetics of hydrocarbons
in Silicalite-1 by the single-step frequency-response method, Zeolites 9, 287 (1989).

[182] T.J.H. Vlugt, W. Zhu, F. Kapteijn, J.A. Moulijn, B. Smit, and R. Krishna, Adsorption of linear and branched
alkanes in the zeolite silicalite-1, J. Am. Chem. Soc. 120, 5599 (1998).

149



BIBLIOGRAPHY

[183] R.L. Wadlinger, G.T. Kerr, and E.J. Rosinski, U.S. Patent 3,308,069 (1967).

[184] Q.-H. Wei, C. Bechinger, and P. Leiderer, Single-file diffusion of colloids in one-dimensional channels,
Science 287, 625 (2000).

[185] O. Weigel and E. Steinhoff, Z. Kristallogr. 61, 125 (1925).

[186] P.B. Weisz and H. Zollinger, Sorption-diffusion in heterogeneous systems, Trans. Faraday Soc. 63, 1815
(1967).

[187] P.B. Weisz, Zeolites — New horizons in catalysis, Chem. Tech. 3, 498 (1973).

[188] B. Widom, Some topics in the theory of fluids, J. Chem. Phys. 39, 2808 (1963).

[189] A. Williams, R. Moss, and P. Harrowell, Orientation dependent interface mobilities in a kinetic mean field
theory of freezing and melting, J. Chem. Phys. 99, 3998 (1993).

[190] H.A. Wilson, On the velocity of solidification and viscosity of supercooled liquids, Philos. Mag. 50, 238
(1900).

[191] S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, and E.M. Flanigan, Aluminophosphate molecular
sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc. 104, 1146 (1982).

[192] Y. Yasuda, Frequency response method for study of the kinetic behavior of a gas-surface system. 1. Theo-
retical treatment, J. Phys. Chem. 80, 1867 (1976).

[193] Y. Yasuda, Frequency response method for study of the kinetic behavior of a gas-surface system. 2. An
ethylene-on-zinc oxide system, J. Phys. Chem. 80, 1870 (1976).

[194] Y. Yasuda, Determination of vapor diffusion coefficients in zeolite by the frequency response method, J.
Phys. Chem. 86, 1913 (1982).

150


